Do you want to publish a course? Click here

Variational mean-fluctuation splitting and drift-fluid models

171   0   0.0 ( 0 )
 Added by Cesare Tronci
 Publication date 2019
  fields Physics
and research's language is English
 Authors Cesare Tronci




Ask ChatGPT about the research

After reviewing the variational approach to splitting mean flow and fluctuation kinetics in the standard Vlasov theory, the same method is applied to the drift-kinetic equation from Littlejohns theory of guiding-center motion. This process sheds a new light on drift-ordered fluid (drift-fluid) models, whose anisotropic pressure tensor is then considered in detail. In addition, current drift-fluid models are completed by the insertion of magnetization terms ensuring momentum conservation. Magnetization currents are also shown to lead to challenging aspects when drift-fluid models are coupled to Maxwells equations for the evolution of the electromagnetic field. In order to overcome these difficulties, a simplified guiding-center theory is proposed along with its possible applications to hybrid kinetic-fluid models.



rate research

Read More

The Dupree-Weinstock renormalization is used to prove that a reactive closure exists for drift wave turbulence in magnetized plasmas. The result is used to explain recent results in gyrokinetic simulations and is also related to the Mattor-Parker closure. The level of closure is found in terms of applied external sources.
In a cross-field (ExB) setup, the electron ExB flow relative to the unmagnetized ions can cause the Electron Cyclotron Drift Instability (ECDI) due to resonances of the ion-acoustic mode and the electron cyclotron harmonics. This occurs in collisionless shocks in magnetospheres and in ExB discharge devices such as Hall thrusters. ECDI induces an electron flow parallel to the background E field at a speed greatly exceeding predictions by classical collision theory. Such anomalous transport might cause unfavorable plasma flows towards the walls of ExB devices. Prediction of ECDI and anomalous transport is often thought to require a fully kinetic treatment. In this work, however, we demonstrate that a reduced variant of this instability, and more importantly, the anomalous transport, can be treated self-consistently in a collisionless two-fluid framework without any adjustable collision parameter, by treating both electron and ion species on an equal footing. We will first present linear analyses of the instability in the two-fluid 5- and 10-moment models, and compare them against the fully kinetic theory. At low temperatures, the two-fluid models predict the fastest-growing mode comparable to the kinetic results. Also, by including more moments, secondary (and possibly higher) unstable branches can be recovered. The dependence of the instability on ion-to-electron mass ratio, plasma temperature, and the background field strength is also thoroughly explored. We then carry out 5-moment simulations of the cross-field setup. The development of the instability and the anomalous transport are confirmed and in excellent agreement with theoretical predictions. The force balance properties are also studied. This work casts new insights into the nature of ECDI and the induced anomalous transport and demonstrates the potential of the two-fluid moment model in the efficient modeling of ExB plasmas.
Fluid models that approximate kinetic effects have received attention recently in the modelling of large scale plasmas such as planetary magnetospheres. In three-dimensional reconnection, both reconnection itself and current sheet instabilities need to be represented appropriately. We show that a heat flux closure based on pressure gradients enables a ten moment fluid model to capture key properties of the lower-hybrid drift instability (LHDI) within a reconnection simulation. Characteristics of the instability are examined with kinetic and fluid continuum models, and its role in the three-dimensional reconnection simulation is analysed. The saturation level of the electromagnetic LHDI is higher than expected which leads to strong kinking of the current sheet. Therefore, the magnitude of the initial perturbation has significant impact on the resulting turbulence.
We present a detailed guide to advanced collisionless fluid models that incorporate kinetic effects into the fluid framework, and that are much closer to the collisionless kinetic description than traditional magnetohydrodynamics. Such fluid models are directly applicable to modeling turbulent evolution of a vast array of astrophysical plasmas, such as the solar corona and the solar wind, the interstellar medium, as well as accretion disks and galaxy clusters. The text can be viewed as a detailed guide to Landau fluid models and it is divided into two parts. Part 1 is dedicated to fluid models that are obtained by closing the fluid hierarchy with simple (non Landau fluid) closures. Part 2 is dedicated to Landau fluid closures. Here in Part 1, we discuss the CGL fluid model in great detail, together with fluid models that contain dispersive effects introduced by the Hall term and by the finite Larmor radius (FLR) corrections to the pressure tensor. We consider dispersive effects introduced by the non-gyrotropic heat flux vectors. We investigate the parallel and oblique firehose instability, and show that the non-gyrotropic heat flux strongly influences the maximum growth rate of these instabilities. Furthermore, we discuss fluid models that contain evolution equations for the gyrotropic heat flux fluctuations and that are closed at the 4th-moment level by prescribing a specific form for the distribution function. For the bi-Maxwellian distribution, such a closure is known as the normal closure. We also discuss a fluid closure for the bi-kappa distribution. Finally, by considering one-dimensional Maxwellian fluid closures at higher-order moments, we show that such fluid models are always unstable. The last possible non Landau fluid closure is therefore the normal closure, and beyond the 4th-order moment, Landau fluid closures are required.
113 - T. Passot , P.L. Sulem , E. Tassi 2017
Reduced fluid models for collisionless plasmas including electron inertia and finite Larmor radius corrections are derived for scales ranging from the ion to the electron gyroradii. Based either on pressure balance or on the incompressibility of the electron fluid, they respectively capture kinetic Alfven waves (KAWs) or whistler waves (WWs), and can provide suitable tools for reconnection and turbulence studies. Both isothermal regimes and Landau fluid closures permitting anisotropic pressure fluctuations are considered. For small values of the electron beta parameter $beta_e$, a perturbative computation of the gyroviscous force valid at scales comparable to the electron inertial length is performed at order $O(beta_e)$, which requires second-order contributions in a scale expansion. Comparisons with kinetic theory are performed in the linear regime. The spectrum of transverse magnetic fluctuations for strong and weak turbulence energy cascades is also phenomenologically predicted for both types of waves. In the case of moderate ion to electron temperature ratio, a new regime of KAW turbulence at scales smaller than the electron inertial length is obtained, where the magnetic energy spectrum decays like $k_perp^{-13/3}$, thus faster than the $k_perp^{-11/3}$ spectrum of WW turbulence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا