Do you want to publish a course? Click here

Laser-produced magnetic-Rayleigh-Taylor unstable plasma slabs in a 20 T magnetic field

81   0   0.0 ( 0 )
 Added by Andrea Ciardi Dr
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetized laser-produced plasmas are central to many novel laboratory astrophysics and inertial confinement fusion studies, as well as in industrial applications. Here we provide the first complete description of the three-dimensional dynamics of a laser-driven plasma plume expanding in a 20 T transverse magnetic field. The plasma is collimated by the magnetic field into a slender, rapidly elongating slab, whose plasma-vacuum interface is unstable to the growth of the classical, fluid-like magnetized Rayleigh-Taylor instability.

rate research

Read More

Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pile-up at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfven time.
98 - Shu-Chao Duan 2017
We give theoretical analyses of the Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Both slab and liner configurations with finite thicknesses are dealt with in the WKB and the non-WKB approximations. Results show that instabilities for all modes (combinations of wave vectors) are alleviated. We further discuss the potential application of the alternant/nested configurations of a theta and a Z pinch to the Theta-Z Liner Inertia Fusion (Theta-Z-LIF) concept.
We propose using a directional time-varying (rotating) driving magnetic field to suppress magneto-Rayleigh-Taylor (MRT) instability in dynamic Z-pinches. A rotational drive magnetic field is equivalent to two magnetic-field components, {Theta} and Z, that alternate in time, referred to as an alternate Theta-Z-pinch configuration. We consider the finitely thick cylindrical liner configuration in this paper. We numerically integrate the perturbation equation to stagnation time based on the optimal background unperturbed trajectories. We assess the cumulative growth of the dominant mode selected by some mechanism at the beginning of an implosion. The maximum e-folding number at stagnation of the dominant mode of an optimized alternate Theta-Z-pinch is significantly lower than that of the standard Theta- or Z-pinch. The directional rotation of the magnetic field contributes to suppress the instabilities, independent of the finite thickness. The finite thickness effect plays a role only when the orientation of the magnetic field varies in time whereas it does not appear in the standard Theta- or Z-pinch. The rotating frequency of the magnetic field and the thickness of liner are both having a monotonic effect on suppression. Their synergistic effect can enhance the suppression on MRT instability. Because the MRT instability can be well suppressed in this way, the alternate Theta-Z-pinch configuration has potential applications in liner inertial fusion. This work is supported by the NSFC (Grant Nos. 11405167, 51407171, 11571293, 11605188, and 11605189) and the Foundation of the China Academy of Engineering Physics (No. 2015B0201023).
We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using particle-in-cell simulations. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the 2D simulations demonstrate a rich variety of reconnection behavior and show the coupling between magnetic reconnection and the global hydrodynamical evolution of the system. We consider both the collision between two radially expanding bubbles where reconnection is seeded by the pre-existing X-point, and the collision between two flows in a quasi-1D geometry with initially anti-parallel fields where reconnection must be initiated by the tearing instability. In both geometries, at a baseline case of low-collisionality and low background density, the current sheet is strongly compressed to below scale of the ion-skin-depth scale, and rapid, multi-plasmoid reconnection results. Increasing the plasma resistivity, we observe a collisional slow-down of reconnection and stabilization of plasmoid instability for Lundquist numbers less than approximately $S sim 10^3$. Secondly, increasing the background plasma density modifies the compressibility of the plasma and can also slow-down or even prevent reconnection, even in completely collisionless regimes, by preventing the current sheet from thinning down to the scale of the ion-skin depth. These results have implications for understanding recent and future experiments, and signatures for these processes for proton-radiography diagnostics of these experiments are discussed.
In an experiment on a magnetic dipole interacting with a laser-produced plasma the generation of an intense field aligned current (FAC) system was observed for the first time in a laboratory. The detailed measurements of the total value and local current density, of the magnetic field at the poles and in the equatorial magnetopause, and particular features of electron motion in the current channels revealed its similarity to the Region-1 current system in the Earth magnetosphere. Such currents were found to exist only if they can close via conductive cover of the dipole. Comparison of conductive and dielectric cases revealed specific magnetic features produced by FACand their connection with electric potential generated in the equatorial part of the magnetopause. To interpret the data we consider a model of electric potential generation in the boundary layer which agrees with experiment and with measurements of the Earth transpolar potential in the absence of an interplanetary magnetic field as well. The results could be of importance for the investigation of Mercury as a magnetic disturbance due to FAC could be especially large because of the small size of the Hermean magnetosphere.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا