Do you want to publish a course? Click here

Laboratory simulation of field aligned currents in experiment on laser-produced plasma interacting with magnetic dipole

173   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In an experiment on a magnetic dipole interacting with a laser-produced plasma the generation of an intense field aligned current (FAC) system was observed for the first time in a laboratory. The detailed measurements of the total value and local current density, of the magnetic field at the poles and in the equatorial magnetopause, and particular features of electron motion in the current channels revealed its similarity to the Region-1 current system in the Earth magnetosphere. Such currents were found to exist only if they can close via conductive cover of the dipole. Comparison of conductive and dielectric cases revealed specific magnetic features produced by FACand their connection with electric potential generated in the equatorial part of the magnetopause. To interpret the data we consider a model of electric potential generation in the boundary layer which agrees with experiment and with measurements of the Earth transpolar potential in the absence of an interplanetary magnetic field as well. The results could be of importance for the investigation of Mercury as a magnetic disturbance due to FAC could be especially large because of the small size of the Hermean magnetosphere.



rate research

Read More

Recent experiments have observed magnetic reconnection in high-energy-density, laser-produced plasma bubbles, with reconnection rates observed to be much higher than can be explained by classical theory. Based on fully kinetic particle simulations we find that fast reconnection in these strongly driven systems can be explained by magnetic flux pile-up at the shoulder of the current sheet and subsequent fast reconnection via two-fluid, collisionless mechanisms. In the strong drive regime with two-fluid effects, we find that the ultimate reconnection time is insensitive to the nominal system Alfven time.
80 - B. Khiar , G. Revet , A. Ciardi 2019
Magnetized laser-produced plasmas are central to many novel laboratory astrophysics and inertial confinement fusion studies, as well as in industrial applications. Here we provide the first complete description of the three-dimensional dynamics of a laser-driven plasma plume expanding in a 20 T transverse magnetic field. The plasma is collimated by the magnetic field into a slender, rapidly elongating slab, whose plasma-vacuum interface is unstable to the growth of the classical, fluid-like magnetized Rayleigh-Taylor instability.
We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using particle-in-cell simulations. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the 2D simulations demonstrate a rich variety of reconnection behavior and show the coupling between magnetic reconnection and the global hydrodynamical evolution of the system. We consider both the collision between two radially expanding bubbles where reconnection is seeded by the pre-existing X-point, and the collision between two flows in a quasi-1D geometry with initially anti-parallel fields where reconnection must be initiated by the tearing instability. In both geometries, at a baseline case of low-collisionality and low background density, the current sheet is strongly compressed to below scale of the ion-skin-depth scale, and rapid, multi-plasmoid reconnection results. Increasing the plasma resistivity, we observe a collisional slow-down of reconnection and stabilization of plasmoid instability for Lundquist numbers less than approximately $S sim 10^3$. Secondly, increasing the background plasma density modifies the compressibility of the plasma and can also slow-down or even prevent reconnection, even in completely collisionless regimes, by preventing the current sheet from thinning down to the scale of the ion-skin depth. These results have implications for understanding recent and future experiments, and signatures for these processes for proton-radiography diagnostics of these experiments are discussed.
In previous experiments by the authors on a magnetic dipole interacting with a laser-produced plasma the generation of an intense field-aligned current (FAC) system on terrella poles was observed. In this paper the question of the origin of these currents in a low-latitude boundary layer of magnetosphere is investigated. Experimental evidence of such a link was obtained by measurements of the magnetic field generated by tangential drag and sheared stress. This specific azimuthal field was found to have quadruple symmetry and local maxima inside the magnetosphere adjacent to the boundary layer. Cases of metallic and dielectric dipole covers modeling good conductive and non-conductive ionosphere revealed that the presence or absence of FACs results in different amplitudes and spatial structures of the sheared field. The current associated with the azimuthal field flows upward at the dawnside, and toward the equator plane at the duskside. It was found to coincide by direction and to correspond by amplitude to a total cross-polar current measured independently. The results suggest that compressional and Alfven waves are responsible for FAC generation. The study is most relevant to FACgeneration in the magnetospheres of Earth and Mercury following pressure jumps in solar wind.
We report a laser-plasma experiment that was carried out at the LMJ-PETAL facility and realized the first magnetized, turbulent, supersonic plasma with a large magnetic Reynolds number ($mathrm{Rm} approx 45$) in the laboratory. Initial seed magnetic fields were amplified, but only moderately so, and did not become dynamically significant. A notable absence of magnetic energy at scales smaller than the outer scale of the turbulent cascade was also observed. Our results support the notion that moderately supersonic, low-magnetic-Prandtl-number plasma turbulence is inefficient at amplifying magnetic fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا