Do you want to publish a course? Click here

Pathological subgradient dynamics

70   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We construct examples of Lipschitz continuous functions, with pathological subgradient dynamics both in continuous and discrete time. In both settings, the iterates generate bounded trajectories, and yet fail to detect any (generalized) critical points of the function.



rate research

Read More

A stochastic incremental subgradient algorithm for the minimization of a sum of convex functions is introduced. The method sequentially uses partial subgradient information and the sequence of partial subgradients is determined by a general Markov chain. This makes it suitable to be used in networks where the path of information flow is stochastically selected. We prove convergence of the algorithm to a weighted objective function where the weights are given by the Ces`aro limiting probability distribution of the Markov chain. Unlike previous works in the literature, the Ces`aro limiting distribution is general (not necessarily uniform), allowing for general weighted objective functions and flexibility in the method.
253 - Kui Zhu , Yutao Tang 2021
This paper studies the distributed optimization problem where the objective functions might be nondifferentiable and subject to heterogeneous set constraints. Unlike existing subgradient methods, we focus on the case when the exact subgradients of the local objective functions can not be accessed by the agents. To solve this problem, we propose a projected primal-dual dynamics using only the objective functions approximate subgradients. We first prove that the formulated optimization problem can only be solved with an approximate error depending upon the accuracy of the available subgradients. Then, we show the exact solvability of this optimization problem if the accumulated approximation error is not too large. After that, we also give a novel componentwise normalized variant to improve the transient behavior of the convergent sequence. The effectiveness of our algorithms is verified by a numerical example.
This paper considers a general convex constrained problem setting where functions are not assumed to be differentiable nor Lipschitz continuous. Our motivation is in finding a simple first-order method for solving a wide range of convex optimization problems with minimal requirements. We study the method of weighted dual averages (Nesterov, 2009) in this setting and prove that it is an optimal method.
A collection of optimization problems central to power system operation requires distributed solution architectures to avoid the need for aggregation of all information at a central location. In this paper, we study distributed dual subgradient methods to solve three such optimization problems. Namely, these are tie-line scheduling in multi-area power systems, coordination of distributed energy resources in radial distribution networks, and joint dispatch of transmission and distribution assets. With suitable relaxations or approximations of the power flow equations, all three problems can be reduced to a multi-agent constrained convex optimization problem. We utilize a constant step-size dual subgradient method with averaging on these problems. For this algorithm, we provide a convergence guarantee that is shown to be order-optimal. We illustrate its application on the grid optimization problems.
The subgradient extragradient method for solving the variational inequality (VI) problem, which is introduced by Censor et al. cite{CGR}, replaces the second projection onto the feasible set of the VI, in the extragradient method, with a subgradient projection onto some constructible half-space. Since the method has been introduced, many authors proposed extensions and modifications with applications to various problems. In this paper, we introduce a modified subgradient extragradient method by improving the stepsize of its second step. Convergence of the proposed method is proved under standard and mild conditions and primary numerical experiments illustrate the performance and advantage of this new subgradient extragradient variant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا