Do you want to publish a course? Click here

Design of a loop-gap resonator with bimodal uniform fields using finite element analysis

90   0   0.0 ( 0 )
 Added by Matthew Libersky
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The loop-gap resonator (LGR) was originally developed to provide a uniform microwave magnetic field on a sample for electron spin resonance (ESR) experiments. The LGR is composed of one or more loops and gaps acting as inductances and capacitances respectively. Typical LGR designs produce a uniform field on a sample at a single resonant frequency, but for certain experiments it is necessary to study the response of a material to uniform fields at multiple frequencies applied simultaneously. In this work we develop an empirical design procedure using finite element method calculations to design an asymmetric loop-gap resonator with uniform fields at two frequencies in the same sample volume and analyze the field uniformity, frequency tunability and filling factors, providing comparison to a manufactured device.



rate research

Read More

We present an S-band tunable loop gap resonator (LGR) providing strong, homogeneous, and directionally uniform broadband microwave (MW) drive for nitrogen-vacancy (NV) ensembles. With 42 dBm of input power, the composite device provides drive field amplitudes approaching 5 G over a circular area $gtrsim!50$ mm$^2$ or cylindrical volume $gtrsim!250$ mm$^3$. The wide 80 MHz device bandwidth allows driving all eight NV Zeeman resonances for bias magnetic fields below 20 G. For pulsed applications the device realizes percent-scale microwave drive inhomogeneity; we measure a fractional root-mean-square inhomogeneity $sigma_text{rms}!=! 1.6%$ and a peak-to-peak variation $sigma_text{pp}!=! 3%$ over a circular area of 11 mm$^2$, and $sigma_text{rms} !=! 3.2%$ and $sigma_text{pp}! =! 10.5%$ over a larger 32 mm$^2$ circular area. We demonstrate incident MW power coupling to the LGR using multiple methodologies: a PCB-fabricated exciter antenna for deployed compact bulk sensors and an inductive coupling coil suitable for microscope-style imaging. The inductive coupling coil allows for approximately $2pi$ steradian combined optical access above and below the device, ideal for envisioned and existing NV imaging and bulk sensing applications.
Quantum annealing devices such as the ones produced by D-Wave systems are typically used for solving optimization and sampling tasks, and in both academia and industry the characterization of their usefulness is subject to active research. Any problem that can naturally be described as a weighted, undirected graph may be a particularly interesting candidate, since such a problem may be formulated a as quadratic unconstrained binary optimization (QUBO) instance, which is solvable on D-Waves Chimera graph architecture. In this paper, we introduce a quantum-assisted finite-element method for design optimization. We show that we can minimize a shape-specific quantity, in our case a ray approximation of sound pressure at a specific position around an object, by manipulating the shape of this object. Our algorithm belongs to the class of quantum-assisted algorithms, as the optimization task runs iteratively on a D-Wave 2000Q quantum processing unit (QPU), whereby the evaluation and interpretation of the results happens classically. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of a QPU, and not to prove supremacy over existing classical finite-element algorithms for design optimization.
Photoacoustic imaging is an emerging technology based on the photoacoustic effect that has developed rapidly in recent years. It combines the high contrast of optical imaging and the high penetration and high resolution of acoustic imaging. As a non-destructive biological tissue imaging technology, photoacoustic imaging has important application value in the field of biomedicine. With its high efficiency bi-oimaging capabilities and excellent biosafety performance, it has been favored by researchers. The visualization of photoacoustic imaging has great research signifi-cance in the early diagnosis of some diseases, especially tumors. In photoacoustic imaging, light transmission and thermal effects are important processes. This article is based on COMSOL software and uses finite element analysis to construct a physi-cal model for simulation. Through laser pulses into the stomach tissue containing tumor, the physical process of light transmission and biological heat transfer was studied, and a photothermal model composed of two physical fields was built, and finally a series of visualization graphics were obtained. This work has certain theo-retical guiding significance for further promoting the application of photoacoustic imaging in the field of biomedicine.
In this work, the finite elements method (FEM) is used to analyse the growth of fretting cracks. FEM can be favourably used to extract the stress intensity factors in mixed mode, a typical situation for cracks growing in the vicinity of a fretting contact. The present study is limited to straight cracks which is a simple system chosen to develop and validate the FEM analysis. The FEM model is tested and validated against popular weight functions for straight cracks perpendicular to the surface. The model is then used to study fretting crack growth and understand the effect of key parameters such as the crack angle and the friction between crack faces. Predictions achieved by this analysis match the essential features of former experimental fretting results, in particular the average crack arrest length can be predicted accurately.
We design and implement 3D lumped element microwave cavities for the coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. Our design spatially focuses the magnetic field to a small mode volume. We achieve large homogeneous single spin coupling rates, with an enhancement of the single spin Rabi frequency of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at SI{3}{GHz}. Finite element simulations confirm that the magnetic field component is homogeneous throughout the entire sample volume, with a RMS deviation of 1.54%. With a sample containing $10^{17}$ nitrogen vacancy electron spins we achieve a collective coupling strength of $Omega=SI{12}{MHz}$, a cooperativity factor $C=27$ and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا