No Arabic abstract
We derive the lower bound of uncertainty relations of two unitary operators for a class of states based on the geometric-arithmetic inequality and Cauchy-Schwarz inequality. Furthermore, we propose a set of uncertainty relations for three unitary operators. Compared to the known bound introduced in Phys.Rev.A.100,022116(2019), the unitary uncertainty relations bound with our method is tighter, to a certain extent. Meanwhile, some examples are given in the paper to illustrate our conclusions.
In this paper we provide a new set of uncertainty principles for unitary operators using a sequence of inequalities with the help of the geometric-arithmetic mean inequality. As these inequalities are fine-grained compared with the well-known Cauchy-Schwarz inequality, our framework naturally improves the results based on the latter. As such, the unitary uncertainty relations based on our method outperform the best known bound introduced in [Phys. Rev. Lett. 120, 230402 (2018)] to some extent. Explicit examples of unitary uncertainty relations are provided to back our claims.
We derive and experimentally investigate a strong uncertainty relation valid for any $n$ unitary operators, which implies the standard uncertainty relation as a special case, and which can be written in terms of geometric phases. It is saturated by every pure state of any $n$-dimensional quantum system, generates a tight overlap uncertainty relation for the transition probabilities of any $n+1$ pure states, and gives an upper bound for the out-of-time-order correlation function. We test these uncertainty relations experimentally for photonic polarisation qubits, including the minimum uncertainty states of the overlap uncertainty relation, via interferometric measurements of generalised geometric phases.
In spite of enormous theoretical and experimental progresses in quantum uncertainty relations, the experimental investigation of most current, and universal formalism of uncertainty relations, namely majorization uncertainty relations (MURs), has not been implemented yet. A significant problem is that previous studies on the classification of MURs only focus on their mathematical expressions, while the physical difference between various forms remains unknown. First, we use a guessing game formalism to study the MURs, which helps us disclosing their physical nature, and distinguishing the essential differences of physical features between diverse forms of MURs. Second, we tighter the bounds of MURs in terms of flatness processes, or equivalently, in terms of majorization lattice. Third, to benchmark our theoretical results, we experimentally verify MURs in the photonic systems.
Uncertainty relations (URs) like the Heisenberg-Robertson or the time-energy UR are often considered to be hallmarks of quantum theory. Here, a simple derivation of these URs is presented based on a single classical inequality from estimation theory, a Cramer-Rao-like bound. The Heisenberg-Robertson UR is then obtained by using the Born rule and the Schrodinger equation. This allows a clear separtion of the probabilistic nature of quantum mechanics from the Hilbert space structure and the dynamical law. It also simplifies the interpretation of the bound. In addition, the Heisenberg-Robertson UR is tightened for mixed states by replacing one variance by the so-called quantum Fisher information. Thermal states of Hamiltonians with evenly-gapped energy levels are shown to saturate the tighter bound for natural choices of the operators. This example is further extended to Gaussian states of a harmonic oscillator. For many-qubit systems, we illustrate the interplay between entanglement and the structure of the operators that saturate the UR with spin-squeezed states and Dicke states.
The non-zero value of Planck constant $hbar$ underlies the emergence of several inequalities that must be satisfied in the quantum realm, the most prominent one being the Heisenberg Uncertainty Principle. Among these inequalities, the Bekenstein bound provides a universal limit on the entropy that can be contained in a localized quantum system of given size and total energy. In this letter, we explore how the Bekenstein bound is affected when the Heisenberg uncertainty relation is deformed so as to accommodate gravitational effects at the Planck scale (Generalized Uncertainty Principle). By resorting to very general arguments, we derive in this way a generalized Bekenstein bound. Physical implications of this result are discussed for both cases of positive and negative values of the deformation parameter.