Do you want to publish a course? Click here

Strong Majorization Uncertainty Relations: Theory and Experiment

356   0   0.0 ( 0 )
 Added by Yuan Yuan
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In spite of enormous theoretical and experimental progresses in quantum uncertainty relations, the experimental investigation of most current, and universal formalism of uncertainty relations, namely majorization uncertainty relations (MURs), has not been implemented yet. A significant problem is that previous studies on the classification of MURs only focus on their mathematical expressions, while the physical difference between various forms remains unknown. First, we use a guessing game formalism to study the MURs, which helps us disclosing their physical nature, and distinguishing the essential differences of physical features between diverse forms of MURs. Second, we tighter the bounds of MURs in terms of flatness processes, or equivalently, in terms of majorization lattice. Third, to benchmark our theoretical results, we experimentally verify MURs in the photonic systems.



rate research

Read More

We derive and experimentally investigate a strong uncertainty relation valid for any $n$ unitary operators, which implies the standard uncertainty relation as a special case, and which can be written in terms of geometric phases. It is saturated by every pure state of any $n$-dimensional quantum system, generates a tight overlap uncertainty relation for the transition probabilities of any $n+1$ pure states, and gives an upper bound for the out-of-time-order correlation function. We test these uncertainty relations experimentally for photonic polarisation qubits, including the minimum uncertainty states of the overlap uncertainty relation, via interferometric measurements of generalised geometric phases.
In this paper we provide a new set of uncertainty principles for unitary operators using a sequence of inequalities with the help of the geometric-arithmetic mean inequality. As these inequalities are fine-grained compared with the well-known Cauchy-Schwarz inequality, our framework naturally improves the results based on the latter. As such, the unitary uncertainty relations based on our method outperform the best known bound introduced in [Phys. Rev. Lett. 120, 230402 (2018)] to some extent. Explicit examples of unitary uncertainty relations are provided to back our claims.
Uncertainty relation is not only of fundamental importance to quantum mechanics, but also crucial to the quantum information technology. Recently, majorization formulation of uncertainty relations (MURs) have been widely studied, ranging from two measurements to multiple measurements. Here, for the first time, we experimentally investigate MURs for two measurements and multiple measurements in the high-dimensional systems, and study the intrinsic distinction between direct-product MURs and direct-sum MURs. The experimental results reveal that by taking different nonnegative Schur-concave functions as uncertainty measure, the two types of MURs have their own particular advantages, and also verify that there exists certain case where three-measurement majorization uncertainty relation is much stronger than the one obtained by summing pairwise two-measurement uncertainty relations. Our work not only fills the gap of experimental studies of majorization uncertainty relations, but also represents an advance in quantitatively understanding and experimental verification of majorization uncertainty relations which are universal and capture the essence of uncertainty in quantum theory.
We derive an entropic uncertainty relation for generalized positive-operator-valued measure (POVM) measurements via a direct-sum majorization relation using Schur concavity of entropic quantities in a finite-dimensional Hilbert space. Our approach provides a significant improvement of the uncertainty bound compared with previous majorization-based approaches [S. Friendland, V. Gheorghiu and G. Gour, Phys. Rev. Lett. 111, 230401 (2013); A. E. Rastegin and K. .Zyczkowski, J. Phys. A, 49, 355301 (2016)], particularly by extending the direct-sum majorization relation first introduced in [L. Rudnicki, Z. Pucha{l}a and K. .{Z}yczkowski, Phys. Rev. A 89, 052115 (2014)]. We illustrate the usefulness of our uncertainty relations by considering a pair of qubit observables in a two-dimensional system and randomly chosen unsharp observables in a three-dimensional system. We also demonstrate that our bound tends to be stronger than the generalized Maassen--Uffink bound with an increase in the unsharpness effect. Furthermore, we extend our approach to the case of multiple POVM measurements, thus making it possible to establish entropic uncertainty relations involving more than two observables.
We prove that a beam splitter, one of the most common optical components, fulfills several classes of majorization relations, which govern the amount of quantum entanglement that it can generate. First, we show that the state resulting from k photons impinging on a beam splitter majorizes the corresponding state with any larger photon number k>k, implying that the entanglement monotonically grows with k. Then, we examine parametric infinitesimal majorization relations as a function of the beam-splitter transmittance, and find that there exists a parameter region where majorization is again fulfilled, implying a monotonic increase of entanglement by moving towards a balanced beam splitter. We also identify regions with a majorization default, where the output states become incomparable. In this latter situation, we find examples where catalysis may nevertheless be used in order to recover majorization. The catalyst states can be as simple as a path-entangled single-photon state or a two-mode vacuum squeezed state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا