Do you want to publish a course? Click here

What does BERT Learn from Multiple-Choice Reading Comprehension Datasets?

87   0   0.0 ( 0 )
 Added by Chenglei Si
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Multiple-Choice Reading Comprehension (MCRC) requires the model to read the passage and question, and select the correct answer among the given options. Recent state-of-the-art models have achieved impressive performance on multiple MCRC datasets. However, such performance may not reflect the models true ability of language understanding and reasoning. In this work, we adopt two approaches to investigate what BERT learns from MCRC datasets: 1) an un-readable data attack, in which we add keywords to confuse BERT, leading to a significant performance drop; and 2) an un-answerable data training, in which we train BERT on partial or shuffled input. Under un-answerable data training, BERT achieves unexpectedly high performance. Based on our experiments on the 5 key MCRC datasets - RACE, MCTest, MCScript, MCScript2.0, DREAM - we observe that 1) fine-tuned BERT mainly learns how keywords lead to correct prediction, instead of learning semantic understanding and reasoning; and 2) BERT does not need correct syntactic information to solve the task; 3) there exists artifacts in these datasets such that they can be solved even without the full context.

rate research

Read More

Recent studies report that many machine reading comprehension (MRC) models can perform closely to or even better than humans on benchmark datasets. However, existing works indicate that many MRC models may learn shortcuts to outwit these benchmarks, but the performance is unsatisfactory in real-world applications. In this work, we attempt to explore, instead of the expected comprehension skills, why these models learn the shortcuts. Based on the observation that a large portion of questions in current datasets have shortcut solutions, we argue that larger proportion of shortcut questions in training data make models rely on shortcut tricks excessively. To investigate this hypothesis, we carefully design two synthetic datasets with annotations that indicate whether a question can be answered using shortcut solutions. We further propose two new methods to quantitatively analyze the learning difficulty regarding shortcut and challenging questions, and revealing the inherent learning mechanism behind the different performance between the two kinds of questions. A thorough empirical analysis shows that MRC models tend to learn shortcut questions earlier than challenging questions, and the high proportions of shortcut questions in training sets hinder models from exploring the sophisticated reasoning skills in the later stage of training.
This paper surveys 54 English Machine Reading Comprehension datasets, with a view to providing a convenient resource for other researchers interested in this problem. We categorize the datasets according to their question and answer form and compare them across various dimensions including size, vocabulary, data source, method of creation, human performance level, and first question word. Our analysis reveals that Wikipedia is by far the most common data source and that there is a relative lack of why, when, and where questions across datasets.
Although Vietnamese is the 17th most popular native-speaker language in the world, there are not many research studies on Vietnamese machine reading comprehension (MRC), the task of understanding a text and answering questions about it. One of the reasons is because of the lack of high-quality benchmark datasets for this task. In this work, we construct a dataset which consists of 2,783 pairs of multiple-choice questions and answers based on 417 Vietnamese texts which are commonly used for teaching reading comprehension for elementary school pupils. In addition, we propose a lexical-based MRC method that utilizes semantic similarity measures and external knowledge sources to analyze questions and extract answers from the given text. We compare the performance of the proposed model with several baseline lexical-based and neural network-based models. Our proposed method achieves 61.81% by accuracy, which is 5.51% higher than the best baseline model. We also measure human performance on our dataset and find that there is a big gap between machine-model and human performances. This indicates that significant progress can be made on this task. The dataset is freely available on our website for research purposes.
Most Reading Comprehension methods limit themselves to queries which can be answered using a single sentence, paragraph, or document. Enabling models to combine disjoint pieces of textual evidence would extend the scope of machine comprehension methods, but currently there exist no resources to train and test this capability. We propose a novel task to encourage the development of models for text understanding across multiple documents and to investigate the limits of existing methods. In our task, a model learns to seek and combine evidence - effectively performing multi-hop (alias multi-step) inference. We devise a methodology to produce datasets for this task, given a collection of query-answer pairs and thematically linked documents. Two datasets from different domains are induced, and we identify potential pitfalls and devise circumvention strategies. We evaluate two previously proposed competitive models and find that one can integrate information across documents. However, both models struggle to select relevant information, as providing documents guaranteed to be relevant greatly improves their performance. While the models outperform several strong baselines, their best accuracy reaches 42.9% compared to human performance at 74.0% - leaving ample room for improvement.
Multi-choice Machine Reading Comprehension (MMRC) aims to select the correct answer from a set of options based on a given passage and question. Due to task specific of MMRC, it is non-trivial to transfer knowledge from other MRC tasks such as SQuAD, Dream. In this paper, we simply reconstruct multi-choice to single-choice by training a binary classification to distinguish whether a certain answer is correct. Then select the option with the highest confidence score. We construct our model upon ALBERT-xxlarge model and estimate it on the RACE dataset. During training, We adopt AutoML strategy to tune better parameters. Experimental results show that the single-choice is better than multi-choice. In addition, by transferring knowledge from other kinds of MRC tasks, our model achieves a new state-of-the-art results in both single and ensemble settings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا