Do you want to publish a course? Click here

Chatter Diagnosis in Milling Using Supervised Learning and Topological Features Vector

60   0   0.0 ( 0 )
 Added by Melih Yesilli
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Chatter detection has become a prominent subject of interest due to its effect on cutting tool life, surface finish and spindle of machine tool. Most of the existing methods in chatter detection literature are based on signal processing and signal decomposition. In this study, we use topological features of data simulating cutting tool vibrations, combined with four supervised machine learning algorithms to diagnose chatter in the milling process. Persistence diagrams, a method of representing topological features, are not easily used in the context of machine learning, so they must be transformed into a form that is more amenable. Specifically, we will focus on two different methods for featurizing persistence diagrams, Carlsson coordinates and template functions. In this paper, we provide classification results for simulated data from various cutting configurations, including upmilling and downmilling, in addition to the same data with some added noise. Our results show that Carlsson Coordinates and Template Functions yield accuracies as high as 96% and 95%, respectively. We also provide evidence that these topological methods are noise robust descriptors for chatter detection.



rate research

Read More

Current Computer-Aided Diagnosis (CAD) methods mainly depend on medical images. The clinical information, which usually needs to be considered in practical clinical diagnosis, has not been fully employed in CAD. In this paper, we propose a novel deep learning-based method for fusing Magnetic Resonance Imaging (MRI)/Computed Tomography (CT) images and clinical information for diagnostic tasks. Two paths of neural layers are performed to extract image features and clinical features, respectively, and at the same time clinical features are employed as the attention to guide the extraction of image features. Finally, these two modalities of features are concatenated to make decisions. We evaluate the proposed method on its applications to Alzheimers disease diagnosis, mild cognitive impairment converter prediction and hepatic microvascular invasion diagnosis. The encouraging experimental results prove the values of the image feature extraction guided by clinical features and the concatenation of two modalities of features for classification, which improve the performance of diagnosis effectively and stably.
A supervised diagnosis system for digital mammogram is developed. The diagnosis processes are done by transforming the data of the images into a feature vector using wavelets multilevel decomposition. This vector is used as the feature tailored toward separating different mammogram classes. The suggested model consists of artificial neural networks designed for classifying mammograms according to tumor type and risk level. Results are enhanced from our previous study by extracting feature vectors using multilevel decompositions instead of one level of decomposition. Radiologist-labeled images were used to evaluate the diagnosis system. Results are very promising and show possible guide for future work.
We present a model for predicting electrocardiogram (ECG) abnormalities in short-duration 12-lead ECG signals which outperformed medical doctors on the 4th year of their cardiology residency. Such exams can provide a full evaluation of heart activity and have not been studied in previous end-to-end machine learning papers. Using the database of a large telehealth network, we built a novel dataset with more than 2 million ECG tracings, orders of magnitude larger than those used in previous studies. Moreover, our dataset is more realistic, as it consist of 12-lead ECGs recorded during standard in-clinics exams. Using this data, we trained a residual neural network with 9 convolutional layers to map 7 to 10 second ECG signals to 6 classes of ECG abnormalities. Future work should extend these results to cover a large range of ECG abnormalities, which could improve the accessibility of this diagnostic tool and avoid wrong diagnosis from medical doctors.
This paper introduces a simple yet powerful approach based on topological data analysis (TDA) for detecting the true steps in a piecewise constant (PWC) signal. The signal is a two-state square wave with randomly varying in-between-pulse spacing, and subject to spurious steps at the rising or falling edges which we refer to as digital ringing. We use persistent homology to derive mathematical guarantees for the resulting change detection which enables accurate identification and counting of the true pulses. The approach is described and tested using both synthetic and experimental data obtained using an engine lathe instrumented with a laser tachometer. The described algorithm enables the accurate calculation of the spindle speed with the appropriate error bounds. The results of the described approach are compared to the frequency domain approach via Fourier transform. It is found that both our approach and the Fourier analysis yield comparable results for numerical and experimental pulses with regular spacing and digital ringing. However, the described approach significantly outperforms Fourier analysis when the spacing between the peaks is varied. We also generalize the approach to higher dimensional PWC signals, although utilizing this extension remains an interesting question for future research.
Convolutional neural networks (CNNs) are a promising technique for automated glaucoma diagnosis from images of the fundus, and these images are routinely acquired as part of an ophthalmic exam. Nevertheless, CNNs typically require a large amount of well-labeled data for training, which may not be available in many biomedical image classification applications, especially when diseases are rare and where labeling by experts is costly. This paper makes two contributions to address this issue: (1) It extends the conventional twin neural network and introduces a training method for low-shot learning when labeled data are limited and imbalanced, and (2) it introduces a novel semi-supervised learning strategy that uses additional unlabeled training data to achieve greater accuracy. Our proposed multi-task twin neural network (MTTNN) can employ any backbone CNN, and we demonstrate with four backbone CNNs that its accuracy with limited training data approaches the accuracy of backbone CNNs trained with a dataset that is 50 times larger. We also introduce One-Vote Veto (OVV) self-training, a semi-supervised learning strategy that is designed specifically for MTTNNs. By taking both self-predictions and contrastive-predictions of the unlabeled training data into account, OVV self-training provides additional pseudo labels for fine tuning a pretrained MTTNN. Using a large (imbalanced) dataset with 66715 fundus photographs acquired over 15 years, extensive experimental results demonstrate the effectiveness of low-shot learning with MTTNN and semi-supervised learning with OVV self-training. Three additional, smaller clinical datasets of fundus images acquired under different conditions (cameras, instruments, locations, populations) are used to demonstrate the generalizability of the proposed methods. Source code and pretrained models will be publicly available upon publication.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا