No Arabic abstract
We present the design and characterisation of a low-noise, resonant input transimpedance amplified photodetector. The device operates at a resonance frequency of $90 ,textrm{MHz}$ and exhibits an input referred current noise of $1.2,textrm{pA}/sqrt{textrm{Hz}}$---marginally above the the theoretical limit of $1.0,textrm{pA}/sqrt{textrm{Hz}}$ set by the room temperature Johnson noise of the detectors $16,textrm{k}Omega$ transimpedance. As a result, the photodetector allows for shot-noise limited operation for input powers exceeding $14,mutextrm{W}$ at $461,textrm{nm}$ corresponding to a noise equivalent power of $3.5,textrm{pW}/sqrt{textrm{Hz}}$. The key design feature which enables this performance is a low-noise, common-source JFET amplifier at the input which helps to reduce the input referred noise contribution of the following amplification stages.
A transimpedance amplifier has been designed for scanning tunneling microscopy (STM). The amplifier features low noise (limited by the Johnson noise of the 1 G{Omega} feedback resistor at low input current and low frequencies), sufficient bandwidth for most STM applications (50 kHz at 35 pF input capacitance), a large dynamic range (0.1 pA--50 nA without range switching), and a low input voltage offset. The amplifier is also suited for placing its first stage into the cryostat of a low-temperature STM, minimizing the input capacitance and reducing the Johnson noise of the feedback resistor. The amplifier may also find applications for specimen current imaging and electron-beam-induced current measurements in scanning electron microscopy and as a photodiode amplifier with a large dynamic range. This paper also discusses the sources of noise including the often neglected effect of non-balanced input impedance of operational amplifiers and describes how to accurately measure and adjust the frequency response of low-current transimpedance amplifiers.
The Pound-Drever-Hall laser stabilization technique requires a fast, low-noise photodetector. We present a simple photodetector design that uses a transformer as an intermediary between a photodiode and cascaded low-noise radio-frequency amplifiers. Our implementation using a silicon photodiode yields a detector with 50 MHz bandwidth, gain $> 10^5$ V/A, and input current noise $< 4$ pA/$sqrt{mathrm{Hz}}$, allowing us to obtain shot-noise-limited performance with low optical power.
We design and demonstrate a resonant-type differential photodetector for low-noise quantum homodyne measurement at 500MHz optical sideband with 17MHz of bandwidth. By using a microwave monolithic amplifier and a discrete voltage buffer circuit, a low-noise voltage amplifier is realized and applied to our detector. 12dB of signal-to-noise ratio of the shot noise to the electric noise is obtained with 5mW of continuous-wave local oscillator. We analyze the frequency response and the noise characteristics of a resonant photodetector, and the theoretical model agrees with the shot noise measurement.
The cable capacitance in cryogenic and high vacuum applications of quartz tuning forks imposes severe constraints on the bandwidth and noise performance of the measurement. We present a single stage low noise transimpedance amplifier with a bandwidth exceeding 1 MHz and provide an in-depth analysis of the dependence of the amplifier parameters on the cable capacitance.
Recent progress on the development of very low noise high purity germanium ionization spectrometers has produced an instrument of 1.2 kg mass and excellent noise performance. The detector was installed in a low-background cryostat intended for use in a direct detection search for low mass, WIMP dark matter. This Transaction reports the thermal characterization of the cryostat, specifications of the newly prepared 1.2 kg p-type point contact germanium detector, and the spectroscopic performance of the integrated system. The integrated detector and low background cryostat achieved full-width-at-half-maximum noise performance of 98 eV for an electronic pulse generator peak and 1.9 keV for the 1332 keV Co-60 gamma ray.