No Arabic abstract
Chimera states -- named after the mythical beast with a lions head, a goats body, and a dragons tail -- correspond to spatiotemporal patterns characterised by the coexistence of coherent and incoherent domains in coupled systems. They were first identified in 2002 in theoretical studies of spatially extended networks of Stuart-Landau oscillators, and have been subject to extensive theoretical and experimental research ever since. While initially considered peculiar to networks with weak nonlocal coupling, recent theoretical studies have predicted that chimera-like states can emerge even in systems with purely local coupling. Here we report on the first experimental observations of chimera-like states in a system with local coupling -- a coherently-driven Kerr nonlinear optical resonator. We show that artificially engineered discreteness -- realised by suitably modulating the coherent driving field -- allows for the nonlinear localisation of spatiotemporal complexity, and we demonstrate unprecedented control over the existence, characteristics, and dynamics of the resulting chimera-like states. Moreover, using ultrafast time lens imaging, we resolve the chimeras picosecond-scale internal structure in real time.
We investigate a time-delayed epidemic model for multi-strain diseases with temporary immunity. In the absence of cross-immunity between strains, dynamics of each individual strain exhibits emergence and anni- hilation of limit cycles due to a Hopf bifurcation of the endemic equilibrium, and a saddle-node bifurcation of limit cycles depending on the time delay associated with duration of temporary immunity. Effects of all-to-all and non-local coupling topologies are systematically investigated by means of numerical simulations, and they suggest that cross-immunity is able to induce a diverse range of complex dynamical behaviors and synchro- nization patterns, including discrete traveling waves, solitary states, and amplitude chimeras. Interestingly, chimera states are observed for narrower cross-immunity kernels, which can have profound implications for understanding the dynamics of multi-strain diseases.
Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.
We study the dynamics of identical leaky integrate-and-fire neurons with symmetric non-local coupling. Upon varying control parameters (coupling strength, coupling range, refractory period) we investigate the systems behaviour and highlight the formation of chimera states. We show that the introduction of a refractory period enlarges the parameter region where chimera states appear and affects the chimera multiplicity.
We present a method for both cross estimation and iterated time series prediction of spatio temporal dynamics based on reconstructed local states, PCA dimension reduction, and local modelling using nearest neighbour methods. The effectiveness of this approach is shown for (noisy) data from a (cubic) Barkley model, the Bueno-Orovio-Cherry-Fenton model, and the Kuramoto-Sivashinsky model.
Formation of diverse patterns in spatially extended reaction-diffusion systems is an important aspect of study which is pertinent to many chemical and biological processes. Of special interest is the peculiar phenomenon of chimera state having spatial coexistence of coherent and incoherent dynamics in a system of identically interacting individuals. In the present article, we report the emergence of various collective dynamical patterns while considering a system of prey-predator dynamics in presence of a two-dimensional diffusive environment. Particularly, we explore the observance of four distinct categories of spatial arrangements among the species, namely spiral wave, spiral chimera, completely synchronized oscillations, and oscillation death states in a broad region of the diffusion-driven parameter space. Emergence of amplitude mediated spiral chimera states displaying drifted amplitudes and phases in the incoherent subpopulation is detected for parameter values beyond both Turing and Hopf bifurcations. Transition scenarios among all these distinguishable patterns are numerically demonstrated for a wide range of the diffusion coefficients which reveal that the chimera states arise during the transition from oscillatory to steady state dynamics. Furthermore, we characterize the occurrence of each of the recognizable patterns by estimating the strength of incoherent subpopulations in the two-dimensional space.