Do you want to publish a course? Click here

DeepPCO: End-to-End Point Cloud Odometry through Deep Parallel Neural Network

89   0   0.0 ( 0 )
 Added by Wei Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Odometry is of key importance for localization in the absence of a map. There is considerable work in the area of visual odometry (VO), and recent advances in deep learning have brought novel approaches to VO, which directly learn salient features from raw images. These learning-based approaches have led to more accurate and robust VO systems. However, they have not been well applied to point cloud data yet. In this work, we investigate how to exploit deep learning to estimate point cloud odometry (PCO), which may serve as a critical component in point cloud-based downstream tasks or learning-based systems. Specifically, we propose a novel end-to-end deep parallel neural network called DeepPCO, which can estimate the 6-DOF poses using consecutive point clouds. It consists of two parallel sub-networks to estimate 3-D translation and orientation respectively rather than a single neural network. We validate our approach on KITTI Visual Odometry/SLAM benchmark dataset with different baselines. Experiments demonstrate that the proposed approach achieves good performance in terms of pose accuracy.



rate research

Read More

The crucial step for localization is to match the current observation to the map. When the two sensor modalities are significantly different, matching becomes challenging. In this paper, we present an end-to-end deep phase correlation network (DPCN) to match heterogeneous sensor measurements. In DPCN, the primary component is a differentiable correlation-based estimator that back-propagates the pose error to learnable feature extractors, which addresses the problem that there are no direct common features for supervision. Also, it eliminates the exhaustive evaluation in some previous methods, improving efficiency. With the interpretable modeling, the network is light-weighted and promising for better generalization. We evaluate the system on both the simulation data and Aero-Ground Dataset which consists of heterogeneous sensor images and aerial images acquired by satellites or aerial robots. The results show that our method is able to match the heterogeneous sensor measurements, outperforming the comparative traditional phase correlation and other learning-based methods. Code is available at https://github.com/jessychen1016/DPCN .
427 - Yi Yu , Feipeng Da , Ziyu Zhang 2021
3D face recognition has shown its potential in many application scenarios. Among numerous 3D face recognition methods, deep-learning-based methods have developed vigorously in recent years. In this paper, an end-to-end deep learning network entitled Sur3dNet-Face for point-cloud-based 3D face recognition is proposed. The network uses PointNet as the backbone, which is a successful point cloud classification solution but does not work properly in face recognition. Supplemented with modifications in network architecture and a few-data guided learning framework based on Gaussian process morphable model, the backbone is successfully modified for 3D face recognition. Different from existing methods training with a large amount of data in multiple datasets, our method uses Spring2003 subset of FRGC v2.0 for training which contains only 943 facial scans, and the network is well trained with the guidance of such a small amount of real data. Without fine-tuning on the test set, the Rank-1 Recognition Rate (RR1) is achieved as follows: 98.85% on FRGC v2.0 dataset and 99.33% on Bosphorus dataset, which proves the effectiveness and the potentiality of our method.
Since the PointNet was proposed, deep learning on point cloud has been the concentration of intense 3D research. However, existing point-based methods usually are not adequate to extract the local features and the spatial pattern of a point cloud for further shape understanding. This paper presents an end-to-end framework, SK-Net, to jointly optimize the inference of spatial keypoint with the learning of feature representation of a point cloud for a specific point cloud task. One key process of SK-Net is the generation of spatial keypoints (Skeypoints). It is jointly conducted by two proposed regulating losses and a task objective function without knowledge of Skeypoint location annotations and proposals. Specifically, our Skeypoints are not sensitive to the location consistency but are acutely aware of shape. Another key process of SK-Net is the extraction of the local structure of Skeypoints (detail feature) and the local spatial pattern of normalized Skeypoints (pattern feature). This process generates a comprehensive representation, pattern-detail (PD) feature, which comprises the local detail information of a point cloud and reveals its spatial pattern through the part district reconstruction on normalized Skeypoints. Consequently, our network is prompted to effectively understand the correlation between different regions of a point cloud and integrate contextual information of the point cloud. In point cloud tasks, such as classification and segmentation, our proposed method performs better than or comparable with the state-of-the-art approaches. We also present an ablation study to demonstrate the advantages of SK-Net.
Automatic affect recognition is a challenging task due to the various modalities emotions can be expressed with. Applications can be found in many domains including multimedia retrieval and human computer interaction. In recent years, deep neural networks have been used with great success in determining emotional states. Inspired by this success, we propose an emotion recognition system using auditory and visual modalities. To capture the emotional content for various styles of speaking, robust features need to be extracted. To this purpose, we utilize a Convolutional Neural Network (CNN) to extract features from the speech, while for the visual modality a deep residual network (ResNet) of 50 layers. In addition to the importance of feature extraction, a machine learning algorithm needs also to be insensitive to outliers while being able to model the context. To tackle this problem, Long Short-Term Memory (LSTM) networks are utilized. The system is then trained in an end-to-end fashion where - by also taking advantage of the correlations of the each of the streams - we manage to significantly outperform the traditional approaches based on auditory and visual handcrafted features for the prediction of spontaneous and natural emotions on the RECOLA database of the AVEC 2016 research challenge on emotion recognition.
This paper proposes an end-to-end learning framework for multiview stereopsis. We term the network SurfaceNet. It takes a set of images and their corresponding camera parameters as input and directly infers the 3D model. The key advantage of the framework is that both photo-consistency as well geometric relations of the surface structure can be directly learned for the purpose of multiview stereopsis in an end-to-end fashion. SurfaceNet is a fully 3D convolutional network which is achieved by encoding the camera parameters together with the images in a 3D voxel representation. We evaluate SurfaceNet on the large-scale DTU benchmark.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا