Do you want to publish a course? Click here

Photonic realization of erasure-based nonlocal measurements

292   0   0.0 ( 0 )
 Added by Xiao-Ye Xu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Relativity theory severely restricts the ability to perform nonlocal measurements in quantum mechanics. Studying such nonlocal schemes may thus reveal insights regarding the relations between these two fundamental theories. Therefore, for the last several decades, nonlocal measurements have stimulated considerable interest. However, the experimental implementation of nonlocal measurements imposes profound restrictions due to the fact that the interaction Hamiltonian cannot contain, in general, nonlocal observables such as the product of local observables belonging to different particles at spacelike-separated regions. In this work, we experimentally realize a scheme for nonlocal measurements with the aid of probabilistic quantum erasure. We apply this scheme to the tasks of performing high accuracy nonlocal measurements of the parity, as well as measurements in the Bell basis, which do not necessitate classical communication between the parties. Unlike other techniques, the nonlocal measurement outcomes are available locally (upon successful postselection). The state reconstructed via performing quantum tomography on the system after the nonlocal measurement indicates the success of the scheme in retrieving nonlocal information while erasing any local data previously acquired by the parties. This measurement scheme allows realizing any controlled-controlled-gate with any coupling strength. Hence our results are expected to have conceptual and practical applications to quantum communication and quantum computation.



rate research

Read More

The Franson interference is a fourth order interference effect, which unlike the better known Hong-Ou-Mandel interference, does not require the entangled photon pairs to be present at the same space-time location for interference to occur - it is nonlocal. Here, we use a modified Franson interferometer to experimentally demonstrate the nonlocal erasure and correction of an image of a phase-object taken through coincidence imaging. This non-local quantum erasure technique can have several potential applications such as phase corrections in quantum imaging and microscopy and also user authentication of two foreign distant parties.
Collective measurements on identically prepared quantum systems can extract more information than local measurements, thereby enhancing information-processing efficiency. Although this nonclassical phenomenon has been known for two decades, it has remained a challenging task to demonstrate the advantage of collective measurements in experiments. Here we introduce a general recipe for performing deterministic collective measurements on two identically prepared qubits based on quantum walks. Using photonic quantum walks, we realize experimentally an optimized collective measurement with fidelity 0.9946 without post selection. As an application, we achieve the highest tomographic efficiency in qubit state tomography to date. Our work offers an effective recipe for beating the precision limit of local measurements in quantum state tomography and metrology. In addition, our study opens an avenue for harvesting the power of collective measurements in quantum information processing and for exploring the intriguing physics behind this power.
We describe a physical implementation of a quantum finite automaton recognizing a well known family of periodic languages. The realization exploits the polarization degree of freedom of single photons and their manipulation through linear optical elements. We use techniques of confidence amplification to reduce the acceptance error probability of the automaton. It is worth remarking that the quantum finite automaton we physically realize is not only interesting per se, but it turns out to be a crucial building block in many quantum finite automaton design frameworks theoretically settled in the literature.
We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the GHZ and symmetric Dicke state. We also show how the gate can be incorporated into extended graph state networks, and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.
We derive an inequality bounding the strength of temporal correlations for a pair of light beams prepared in a separable state and propagating through dispersive media with opposite signs of group velocity dispersion. The presented inequality can be violated by entangled states of light, such as photon pairs produced in spontaneous parametric down-conversion. Because the class of separable states covers the entire category of classical fields as a particular case, this result provides an unambiguously quantum feature of nonlocal dispersion cancellation that cannot be reproduced within the classical theory of electromagnetic radiation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا