No Arabic abstract
The Franson interference is a fourth order interference effect, which unlike the better known Hong-Ou-Mandel interference, does not require the entangled photon pairs to be present at the same space-time location for interference to occur - it is nonlocal. Here, we use a modified Franson interferometer to experimentally demonstrate the nonlocal erasure and correction of an image of a phase-object taken through coincidence imaging. This non-local quantum erasure technique can have several potential applications such as phase corrections in quantum imaging and microscopy and also user authentication of two foreign distant parties.
Relativity theory severely restricts the ability to perform nonlocal measurements in quantum mechanics. Studying such nonlocal schemes may thus reveal insights regarding the relations between these two fundamental theories. Therefore, for the last several decades, nonlocal measurements have stimulated considerable interest. However, the experimental implementation of nonlocal measurements imposes profound restrictions due to the fact that the interaction Hamiltonian cannot contain, in general, nonlocal observables such as the product of local observables belonging to different particles at spacelike-separated regions. In this work, we experimentally realize a scheme for nonlocal measurements with the aid of probabilistic quantum erasure. We apply this scheme to the tasks of performing high accuracy nonlocal measurements of the parity, as well as measurements in the Bell basis, which do not necessitate classical communication between the parties. Unlike other techniques, the nonlocal measurement outcomes are available locally (upon successful postselection). The state reconstructed via performing quantum tomography on the system after the nonlocal measurement indicates the success of the scheme in retrieving nonlocal information while erasing any local data previously acquired by the parties. This measurement scheme allows realizing any controlled-controlled-gate with any coupling strength. Hence our results are expected to have conceptual and practical applications to quantum communication and quantum computation.
The ability of phase-change materials to reversibly and rapidly switch between two stable phases has driven their use in a number of applications such as data storage and optical modulators. Incorporating such materials into metasurfaces enables new approaches to the control of optical fields. In this article we present the design of novel switchable metasurfaces that enable the control of the nonclassical two-photon quantum interference. These structures require no static power consumption, operate at room temperature, and have high switching speed. For the first adaptive metasurface presented in this article, tunable nonclassical two-photon interference from -97.7% (anti-coalescence) to 75.48% (coalescence) is predicted. For the second adaptive geometry, the quantum interference switches from -59.42% (anti-coalescence) to 86.09% (coalescence) upon a thermally driven crystallographic phase transition. The development of compact and rapidly controllable quantum devices is opening up promising paths to brand-new quantum applications as well as the possibility of improving free space quantum logic gates, linear-optics bell experiments, and quantum phase estimation systems.
The phenomenon of quantum erasure has long intrigued physicists, but has surprisingly found limited practical application. Here, we propose an erasure-based protocol for quantum key distribution (QKD) that promises inherent security against detector attacks.
Quantum marking and quantum erasure are discussed for the neutral kaon system. Contrary to other two-level systems, strangeness and lifetime of a neutral kaon state can be alternatively measured via an active or a passive procedure. This offers new quantum erasure possibilities. In particular, the operation of a quantum eraser in the delayed choice mode is clearly illustrated.
Entangled K0 anti-K0 pairs are shown to be suitable to discuss extensions and tests of Bohrs complementarity principle through the quantum marking and quantum erasure techniques suggested by M. O. Scully and K. Druehl [Phys. Rev. A 25, 2208 (1982)]. Strangeness oscillations play the role of the traditional interference pattern linked to wave-like behaviour, whereas the distinct propagation in free space of the K_S and K_L components mimics the two possible interferometric paths taken by particle-like objects.