Do you want to publish a course? Click here

KnowIT VQA: Answering Knowledge-Based Questions about Videos

376   0   0.0 ( 0 )
 Added by Noa Garcia
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We propose a novel video understanding task by fusing knowledge-based and video question answering. First, we introduce KnowIT VQA, a video dataset with 24,282 human-generated question-answer pairs about a popular sitcom. The dataset combines visual, textual and temporal coherence reasoning together with knowledge-based questions, which need of the experience obtained from the viewing of the series to be answered. Second, we propose a video understanding model by combining the visual and textual video content with specific knowledge about the show. Our main findings are: (i) the incorporation of knowledge produces outstanding improvements for VQA in video, and (ii) the performance on KnowIT VQA still lags well behind human accuracy, indicating its usefulness for studying current video modelling limitations.



rate research

Read More

We propose a novel video understanding task by fusing knowledge-based and video question answering. First, we introduce KnowIT VQA, a video dataset with 24,282 human-generated question-answer pairs about a popular sitcom. The dataset combines visual, textual and temporal coherence reasoning together with knowledge-based questions, which need of the experience obtained from the viewing of the series to be answered. Second, we propose a video understanding model by combining the visual and textual video content with specific knowledge about the show. Our main findings are: (i) the incorporation of knowledge produces outstanding improvements for VQA in video, and (ii) the performance on KnowIT VQA still lags well behind human accuracy, indicating its usefulness for studying current video modelling limitations.
One of the most challenging question types in VQA is when answering the question requires outside knowledge not present in the image. In this work we study open-domain knowledge, the setting when the knowledge required to answer a question is not given/annotated, neither at training nor test time. We tap into two types of knowledge representations and reasoning. First, implicit knowledge which can be learned effectively from unsupervised language pre-training and supervised training data with transformer-based models. Second, explicit, symbolic knowledge encoded in knowledge bases. Our approach combines both - exploiting the powerful implicit reasoning of transformer models for answer prediction, and integrating symbolic representations from a knowledge graph, while never losing their explicit semantics to an implicit embedding. We combine diverse sources of knowledge to cover the wide variety of knowledge needed to solve knowledge-based questions. We show our approach, KRISP (Knowledge Reasoning with Implicit and Symbolic rePresentations), significantly outperforms state-of-the-art on OK-VQA, the largest available dataset for open-domain knowledge-based VQA. We show with extensive ablations that while our model successfully exploits implicit knowledge reasoning, the symbolic answer module which explicitly connects the knowledge graph to the answer vocabulary is critical to the performance of our method and generalizes to rare answers.
Open-domain question answering (QA) is an important problem in AI and NLP that is emerging as a bellwether for progress on the generalizability of AI methods and techniques. Much of the progress in open-domain QA systems has been realized through advances in information retrieval methods and corpus construction. In this paper, we focus on the recently introduced ARC Challenge dataset, which contains 2,590 multiple choice questions authored for grade-school science exams. These questions are selected to be the most challenging for current QA systems, and current state of the art performance is only slightly better than random chance. We present a system that rewrites a given question into queries that are used to retrieve supporting text from a large corpus of science-related text. Our rewriter is able to incorporate background knowledge from ConceptNet and -- in tandem with a generic textual entailment system trained on SciTail that identifies support in the retrieved results -- outperforms several strong baselines on the end-to-end QA task despite only being trained to identify essential terms in the original source question. We use a generalizable decision methodology over the retrieved evidence and answer candidates to select the best answer. By combining query rewriting, background knowledge, and textual entailment our system is able to outperform several strong baselines on the ARC dataset.
Taking an image and question as the input of our method, it can output the text-based answer of the query question about the given image, so called Visual Question Answering (VQA). There are two main modules in our algorithm. Given a natural language question about an image, the first module takes the question as input and then outputs the basic questions of the main given question. The second module takes the main question, image and these basic questions as input and then outputs the text-based answer of the main question. We formulate the basic questions generation problem as a LASSO optimization problem, and also propose a criterion about how to exploit these basic questions to help answer main question. Our method is evaluated on the challenging VQA dataset and yields state-of-the-art accuracy, 60.34% in open-ended task.
Chart question answering (CQA) is a newly proposed visual question answering (VQA) task where an algorithm must answer questions about data visualizations, e.g. bar charts, pie charts, and line graphs. CQA requires capabilities that natural-image VQA algorithms lack: fine-grained measurements, optical character recognition, and handling out-of-vocabulary words in both questions and answers. Without modifications, state-of-the-art VQA algorithms perform poorly on this task. Here, we propose a novel CQA algorithm called parallel recurrent fusion of image and language (PReFIL). PReFIL first learns bimodal embeddings by fusing question and image features and then intelligently aggregates these learned embeddings to answer the given question. Despite its simplicity, PReFIL greatly surpasses state-of-the art systems and human baselines on both the FigureQA and DVQA datasets. Additionally, we demonstrate that PReFIL can be used to reconstruct tables by asking a series of questions about a chart.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا