Do you want to publish a course? Click here

Status of the Jiangmen Underground Neutrino Observatory

92   0   0.0 ( 0 )
 Added by Cong Guo
 Publication date 2019
  fields Physics
and research's language is English
 Authors Cong Guo




Ask ChatGPT about the research

The Jiangmen Underground Neutrino Observatory is a multipurpose neutrino experiment designed to determine neutrino mass hierarchy and precisely measure oscillation parameters by detecting reactor neutrinos from the Yangjiang and Taishan Nuclear Power Plants, observe supernova neutrinos, study the atmospheric, solar neutrinos and geo-neutrinos, and perform exotic searches, with a 20-thousand-ton liquid scintillator detector of unprecedented 3% energy resolution (at 1 MeV) at 700-meter deep underground. In this proceeding, the subsystems of the experiment, including the cental detector, the online scintillator internal radioactivity investigation system, the PMT, the veto detector, the calibration system and the taishan antineutrino observatory, will be described. The construction is expected to be completed in 2021.



rate research

Read More

A cable loop source calibration system is developed for the Jiangmen Underground Neutrino Observatory, a 20 kton spherical liquid scintillator neutrino experiment. This system is capable of deploying radioactive sources into different positions of the detector in a vertical plane with a few-cm position accuracy. The design and the performance of the prototype are reported in this paper.
150 - C.Guo , Y.P.Zhang , J.C.Liu 2018
The Jiangmen Underground Neutrino Observatory (JUNO), a 20ktons multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. Due to low background requirement of the experiment, a multi-veto system ,which consists of a water Cherenkov detector and a top tracker detector, is required. In order to keep the water quality good and remove the radon in the water, a ultra-pure water system, a radon removal system and radon concentration measurement system have been designed. In this paper, the radon removal equipments and its radon removal limit will be presented.
The Jiangmen Underground Neutrino Observatory is proposed to determine neutrino mass hierarchy using a 20~ktonne liquid scintillator detector. Strict radio-purity requirements have been put forward for all the components of the detector. According to the MC simulation results, the radon dissolved in the water Cherenkov detector should be below 200~mBq/m$^3$. Radium, the progenitor of radon, should also be taken seriously into account. In order to measure the radium concentration in water, a radium measurement system, which consists of a radium extraction system, a radon emanation chamber and a radon concentration measurement system, has been developed. In this paper, the updated radon concentration in gas measurement system with a one-day-measurement sensitivity of $sim$5~mBq/m$^3$, the detail of the development of the radium concentration in water measurement system with a sensitivity of $sim$23~mBq/m$^3$ as well as the measurement results of Daya Bay water samples will be presented.
The large next generation liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) offers an excellent opportunity for neutrino oscillometry. The characteristic spatial pattern of very low monoenergetic neutrino disappearance from artificial radioactive sources can be detected within the long length of detector. Sufficiently strong sources of more than 1 MCi activity can be produced at nuclear reactors. Oscillometry will provide a unique tool for precise determination of the mixing parameters for both active and sterile neutrinos within the broad mass region 0.01 - 2 (eV)^2. LENA can be considered as a versatile tool for a careful investigation of neutrino oscillations.
The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model independent measurement of the absolute scale of neutrino mass. HOLMES is an experiment funded by the European Research Council to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of the artificial isotope $^{163}$Ho. In a calorimetric measurement the energy released in the decay process is entirely contained into the detector, except for the fraction taken away by the neutrino. This approach eliminates both the issues related to the use of an external source and the systematic uncertainties arising from decays on excited final states. The most suitable detectors for this type of measurement are low temperature thermal detectors, where all the energy released into an absorber is converted into a temperature increase that can be measured by a sensitive thermometer directly coupled with the absorber. This measurement was originally proposed in 1982 by A. De Rujula and M. Lusignoli, but only in the last decade the technological progress in detectors development has allowed to design a sensitive experiment. HOLMES plans to deploy a large array of low temperature microcalorimeters with implanted $^{163}$Ho nuclei. In this contribution we outline the HOLMES project with its physics reach and technical challenges, along with its status and perspectives.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا