Do you want to publish a course? Click here

The Restless Hidden Markov Bandit with Linear Rewards and Side Information

57   0   0.0 ( 0 )
 Added by Michal Yemini
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper we present a model for the hidden Markovian bandit problem with linear rewards. As opposed to current work on Markovian bandits, we do not assume that the state is known to the decision maker before making the decision. Furthermore, we assume structural side information where the decision maker knows in advance that there are two types of hidden states; one is common to all arms and evolves according to a Markovian distribution, and the other is unique to each arm and is distributed according to an i.i.d. process that is unique to each arm. We present an algorithm and regret analysis to this problem. Surprisingly, we can recover the hidden states and maintain logarithmic regret in the case of a convex polytope action set. Furthermore, we show that the structural side information leads to expected regret that does not depend on the number of extreme points in the action space. Therefore, we obtain practical solutions even in high dimensional problems.



rate research

Read More

We propose a bandit algorithm that explores purely by randomizing its past observations. In particular, the sufficient optimism in the mean reward estimates is achieved by exploiting the variance in the past observed rewards. We name the algorithm Capitalizing On Rewards (CORe). The algorithm is general and can be easily applied to different bandit settings. The main benefit of CORe is that its exploration is fully data-dependent. It does not rely on any external noise and adapts to different problems without parameter tuning. We derive a $tilde O(dsqrt{nlog K})$ gap-free bound on the $n$-round regret of CORe in a stochastic linear bandit, where $d$ is the number of features and $K$ is the number of arms. Extensive empirical evaluation on multiple synthetic and real-world problems demonstrates the effectiveness of CORe.
This paper proposes using the uncertainty of information (UoI), measured by Shannons entropy, as a metric for information freshness. We consider a system in which a central monitor observes multiple binary Markov processes through a communication channel. The UoI of a Markov process corresponds to the monitors uncertainty about its state. At each time step, only one Markov process can be selected to update its state to the monitor; hence there is a tradeoff among the UoIs of the processes that depend on the scheduling policy used to select the process to be updated. The age of information (AoI) of a process corresponds to the time since its last update. In general, the associated UoI can be a non-increasing function, or even an oscillating function, of its AoI, making the scheduling problem particularly challenging. This paper investigates scheduling policies that aim to minimize the average sum-UoI of the processes over the infinite time horizon. We formulate the problem as a restless multi-armed bandit (RMAB) problem, and develop a Whittle index policy that is near-optimal for the RMAB after proving its indexability. We further provide an iterative algorithm to compute the Whittle index for the practical deployment of the policy. Although this paper focuses on UoI scheduling, our results apply to a general class of RMABs for which the UoI scheduling problem is a special case. Specifically, this papers Whittle index policy is valid for any RMAB in which the bandits are binary Markov processes and the penalty is a concave function of the belief state of the Markov process. Numerical results demonstrate the excellent performance of the Whittle index policy for this class of RMABs.
Restless and collapsing bandits are commonly used to model constrained resource allocation in settings featuring arms with action-dependent transition probabilities, such as allocating health interventions among patients [Whittle, 1988; Mate et al., 2020]. However, state-of-the-art Whittle-index-based approaches to this planning problem either do not consider fairness among arms, or incentivize fairness without guaranteeing it [Mate et al., 2021]. Additionally, their optimality guarantees only apply when arms are indexable and threshold-optimal. We demonstrate that the incorporation of hard fairness constraints necessitates the coupling of arms, which undermines the tractability, and by extension, indexability of the problem. We then introduce ProbFair, a probabilistically fair stationary policy that maximizes total expected reward and satisfies the budget constraint, while ensuring a strictly positive lower bound on the probability of being pulled at each timestep. We evaluate our algorithm on a real-world application, where interventions support continuous positive airway pressure (CPAP) therapy adherence among obstructive sleep apnea (OSA) patients, as well as simulations on a broader class of synthetic transition matrices.
We study a novel variant of online finite-horizon Markov Decision Processes with adversarially changing loss functions and initially unknown dynamics. In each episode, the learner suffers the loss accumulated along the trajectory realized by the policy chosen for the episode, and observes aggregate bandit feedback: the trajectory is revealed along with the cumulative loss suffered, rather than the individual losses encountered along the trajectory. Our main result is a computationally efficient algorithm with $O(sqrt{K})$ regret for this setting, where $K$ is the number of episodes. We establish this result via an efficient reduction to a novel bandit learning setting we call Distorted Linear Bandits (DLB), which is a variant of bandit linear optimization where actions chosen by the learner are adversarially distorted before they are committed. We then develop a computationally-efficient online algorithm for DLB for which we prove an $O(sqrt{T})$ regret bound, where $T$ is the number of time steps. Our algorithm is based on online mirror descent with a self-concordant barrier regularization that employs a novel increasing learning rate schedule.
Restless Multi-Armed Bandits (RMABs) have been popularly used to model limited resource allocation problems. Recently, these have been employed for health monitoring and intervention planning problems. However, the existing approaches fail to account for the arrival of new patients and the departure of enrolled patients from a treatment program. To address this challenge, we formulate a streaming bandit (S-RMAB) framework, a generalization of RMABs where heterogeneous arms arrive and leave under possibly random streams. We propose a new and scalable approach to computing index-based solutions. We start by proving that index values decrease for short residual lifetimes, a phenomenon that we call index decay. We then provide algorithms designed to capture index decay without having to solve the costly finite horizon problem, thereby lowering the computational complexity compared to existing methods.We evaluate our approach via simulations run on real-world data obtained from a tuberculosis intervention planning task as well as multiple other synthetic domains. Our algorithms achieve an over 150x speed-up over existing methods in these tasks without loss in performance. These findings are robust across multiple domains.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا