A dynamic treatment regimen (DTR) is a pre-specified sequence of decision rules which maps baseline or time-varying measurements on an individual to a recommended intervention or set of interventions. Sequential multiple assignment randomized trials (SMARTs) represent an important data collection tool for informing the construction of effective DTRs. A common primary aim in a SMART is the marginal mean comparison between two or more of the DTRs embedded in the trial. This manuscript develops a mixed effects modeling and estimation approach for these primary aim comparisons based on a continuous, longitudinal outcome. The method is illustrated using data from a SMART in autism research.
Clinicians and researchers alike are increasingly interested in how best to personalize interventions. A dynamic treatment regimen (DTR) is a sequence of pre-specified decision rules which can be used to guide the delivery of a sequence of treatments or interventions that are tailored to the changing needs of the individual. The sequential multiple-assignment randomized trial (SMART) is a research tool which allows for the construction of effective DTRs. We derive easy-to-use formulae for computing the total sample size for three common two-stage SMART designs in which the primary aim is to compare mean end-of-study outcomes for two embedded DTRs which recommend different first-stage treatments. The formulae are derived in the context of a regression model which leverages information from a longitudinal outcome collected over the entire study. We show that the sample size formula for a SMART can be written as the product of the sample size formula for a standard two-arm randomized trial, a deflation factor that accounts for the increased statistical efficiency resulting from a longitudinal analysis, and an inflation factor that accounts for the design of a SMART. The SMART design inflation factor is typically a function of the anticipated probability of response to first-stage treatment. We review modeling and estimation for DTR effect analyses using a longitudinal outcome from a SMART, as well as the estimation of standard errors. We also present estimators for the covariance matrix for a variety of common working correlation structures. Methods are motivated using the ENGAGE study, a SMART aimed at developing a DTR for increasing motivation to attend treatments among alcohol- and cocaine-dependent patients.
In many health domains such as substance-use, outcomes are often counts with an excessive number of zeros (EZ) - count data having zero counts at a rate significantly higher than that expected of a standard count distribution (e.g., Poisson). However, an important gap exists in sample size estimation methodology for planning sequential multiple assignment randomized trials (SMARTs) for comparing dynamic treatment regimens (DTRs) using longitudinal count data. DTRs, also known as treatment algorithms or adaptive interventions, mimic the individualized and evolving nature of patient care through the specification of decision rules guiding the type, timing and modality of delivery, and dosage of treatments to address the unique and changing needs of individuals. To close this gap, we develop a Monte Carlo-based approach to sample size estimation. A SMART for engaging alcohol and cocaine-dependent patients in treatment is used as motivation.
Concerns have been expressed over the validity of statistical inference under covariate-adaptive randomization despite the extensive use in clinical trials. In the literature, the inferential properties under covariate-adaptive randomization have been mainly studied for continuous responses; in particular, it is well known that the usual two sample t-test for treatment effect is typically conservative, in the sense that the actual test size is smaller than the nominal level. This phenomenon of invalid tests has also been found for generalized linear models without adjusting for the covariates and are sometimes more worrisome due to inflated Type I error. The purpose of this study is to examine the unadjusted test for treatment effect under generalized linear models and covariate-adaptive randomization. For a large class of covariate-adaptive randomization methods, we obtain the asymptotic distribution of the test statistic under the null hypothesis and derive the conditions under which the test is conservative, valid, or anti-conservative. Several commonly used generalized linear models, such as logistic regression and Poisson regression, are discussed in detail. An adjustment method is also proposed to achieve a valid size based on the asymptotic results. Numerical studies confirm the theoretical findings and demonstrate the effectiveness of the proposed adjustment method.
The primary analysis of randomized screening trials for cancer typically adheres to the intention-to-screen principle, measuring cancer-specific mortality reductions between screening and control arms. These mortality reductions result from a combination of the screening regimen, screening technology and the effect of the early, screening-induced, treatment. This motivates addressing these different aspects separately. Here we are interested in the causal effect of early versus delayed treatments on cancer mortality among the screening-detectable subgroup, which under certain assumptions is estimable from conventional randomized screening trial using instrumental variable type methods. To define the causal effect of interest, we formulate a simplified structural multi-state model for screening trials, based on a hypothetical intervention trial where screening detected individuals would be randomized into early versus delayed treatments. The cancer-specific mortality reductions after screening detection are quantified by a cause-specific hazard ratio. For this, we propose two estimators, based on an estimating equation and a likelihood expression. The methods extend existing instrumental variable methods for time-to-event and competing risks outcomes to time-dependent intermediate variables. Using the multi-state model as the basis of a data generating mechanism, we investigate the performance of the new estimators through simulation studies. In addition, we illustrate the proposed method in the context of CT screening for lung cancer using the US National Lung Screening Trial (NLST) data.
The identification of factors associated with mental and behavioral disorders in early childhood is critical both for psychopathology research and the support of primary health care practices. Motivated by the Millennium Cohort Study, in this paper we study the effect of a comprehensive set of covariates on childrens emotional and behavioural trajectories in England. To this end, we develop a Quantile Mixed Hidden Markov Model for joint estimation of multiple quantiles in a linear regression setting for multivariate longitudinal data. The novelty of the proposed approach is based on the Multivariate Asymmetric Laplace distribution which allows to jointly estimate the quantiles of the univariate conditional distributions of a multivariate response, accounting for possible correlation between the outcomes. Sources of unobserved heterogeneity and serial dependency due to repeated measures are modeled through the introduction of individual-specific, time-constant random coefficients and time-varying parameters evolving over time with a Markovian structure, respectively. The inferential approach is carried out through the construction of a suitable Expectation-Maximization algorithm without parametric assumptions on the random effects distribution.