Do you want to publish a course? Click here

New physics with boosted single top production at the LHC and future colliders

292   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We address the potential of measurements with boosted single-top final states at the high-luminosity LHC (HL-LHC) and possible future hadron colliders: the high-energy LHC (HE-LHC), and the future circular collider (FCC). As new physics examples to assess the potential, we consider the search for $tbW$ anomalous couplings and for a weakly-coupled $W$ boson. The FCC would improve by a factor of two the sensitivity to anomalous couplings of the HL-LHC. For $W$ bosons, the FCC is sensitive to $W$ couplings $2-5$ times smaller than the HL-LHC in the mass range 2-4 TeV, and to masses up to 30 TeV in the case of Standard Model-like couplings.



rate research

Read More

128 - A. Carle , N. Chanon , 2019
This article presents prospects for Lorentz-violation searches with $tbar{t}$ at the LHC and future colliders. After a short presentation of the Standard-Model Extension as a Lorentz-symmetry-breaking effective field theory, we will focus on $tbar{t}$ production. We study the impact of Lorentz violation as a function of center-of-mass energy and evaluate the sensitivity of collider experiments to this signal.
The associated production of a single-top with opposite-sign same-flavor (OSSF) di-leptons, $pp to t ell^+ ell^-$ and $ pp to t ell^+ ell^- + j$ ($j=$light jet), can lead to striking tri-lepton $pp to ell^prime ell^+ ell^- + X$ and di-lepton $pp to ell^+ ell^- + j_b + X$ ($j_b=b$-jet) events at the LHC, after the top decays. Although these rather generic multi-lepton signals are flavor-blind, they can be generated by new 4-Fermi flavor changing (FC) $u_i t ell ell$ scalar, vector and tensor interactions ($u_i in u,c$), which we study in this paper; we match the FC $u_i t ell ell$ 4-Fermi terms to the SMEFT operators and also to different types of FC underlying heavy physics. The main backgrounds to these di- and tri-lepton signals arise from $t bar t$, $Z$+jets and $VV$ ($V=W,Z$) production, but they can be essentially eliminated with a sufficiently high invariant mass selection on the OSSF di-leptons, $m_{ell^+ ell^-}^{tt min}(OSSF) > 1$ TeV; the use of $b$-tagging as an additional selection in the di-lepton final state case also proves very useful. We find, for example, that the expected 95% CL bounds on the scale of a tensor(vector) $u t mu mu$ interaction, with the current $sim 140$ fb$^{-1}$ of LHC data, are $Lambda < 5(3.2) $ TeV or $Lambda < 4.1(2.7)$ TeV, if analyzed via the di-muon $mu^+ mu^- + j_b$ signal or the $e mu^+ mu^-$ tri-lepton one, respectively. The expected reach at the HL-LHC with 3000 fb$^{-1}$ of data is $Lambda < 7.1(4.7)$ TeV and $Lambda < 2.4(1.5)$ TeV for the corresponding $u t mu mu$ and $c t mu mu$ operators. We also study the potential sensitivity at future 27 TeV and 100 TeV high-energy LHC successors and also discuss the possible implications of this class of FC 4-Fermi effective interactions on lepton non-universality tests at the LHC.
162 - P.H. Khiem , E. Kou , Y. Kurihara 2015
We investigate the sensitivity to new physics of the process e+e- -> t bar{t} when the top polarization is analyzed using leptonic final states e+e- -> t bar{t} -> l+l- b bar{b} nu_l bar{nu}_l. We first show that the kinematical reconstruction of the complete kinematics is experimentally tractable for this process. Then we apply the matrix element method to study the sensitivity to the Vtbar{t} coupling (V being a vector gauge boson), at the tree level and in the narrow width approximation. Assuming the ILC baseline configuration, sqrt{S}=500 GeV, and a luminosity of 500 fb^{-1}, we conclude that this optimal analysis allows to determine simultaneously the ten form factors that parameterize the Vtbar{t} coupling, below the percent level. We also discuss the effects of the next leading order (NLO) electroweak corrections using the GRACE program with polarized beams. It is found that the NLO corrections to different beam polarization lead to significantly different patterns of contributions.
Information deformation and loss in jet clustering are one of the major limitations for precisely measuring hadronic events at future $e^-e^+$ colliders. Because of their dominance in data, the measurements of such events are crucial for advancing the precision frontier of Higgs and electroweak physics in the next decades. We show that this difficulty can be well-addressed by synergizing the event-level information into the data analysis, with the techniques of deep neutral network. In relation to this, we introduce a CMB-like observable scheme, where the event-level kinematics is encoded as Fox-Wolfram (FW) moments at leading order and multi-spectra at higher orders. Then we develop a series of jet-level (w/ and w/o the FW moments) and event-level classifiers, and analyze their sensitivity performance comparatively with two-jet and four-jet events. As an application, we analyze measuring Higgs decay width at $e^-e^+$ colliders with the data of 5ab$^{-1}@$240GeV. The precision obtained is significantly better than the baseline ones presented in documents. We expect this strategy to be applied to many other hadronic-event measurements at future $e^-e^+$ colliders, and to open a new angle for evaluating their physics capability.
This report describes the studies performed for the Snowmass Top algorithms and detectors High Energy Frontier Study Group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا