Do you want to publish a course? Click here

Probing New Physics using top quark polarization in the e+e- -> t bar{t} process at future Linear Colliders

161   0   0.0 ( 0 )
 Added by Emi Kou
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the sensitivity to new physics of the process e+e- -> t bar{t} when the top polarization is analyzed using leptonic final states e+e- -> t bar{t} -> l+l- b bar{b} nu_l bar{nu}_l. We first show that the kinematical reconstruction of the complete kinematics is experimentally tractable for this process. Then we apply the matrix element method to study the sensitivity to the Vtbar{t} coupling (V being a vector gauge boson), at the tree level and in the narrow width approximation. Assuming the ILC baseline configuration, sqrt{S}=500 GeV, and a luminosity of 500 fb^{-1}, we conclude that this optimal analysis allows to determine simultaneously the ten form factors that parameterize the Vtbar{t} coupling, below the percent level. We also discuss the effects of the next leading order (NLO) electroweak corrections using the GRACE program with polarized beams. It is found that the NLO corrections to different beam polarization lead to significantly different patterns of contributions.



rate research

Read More

472 - S. Groote , J.G. Korner , B. Melic 2012
We present a detailed investigation of the NLO polarization of the top quark in t t-bar production at a polarized linear e^+ e^- collider with longitudinally polarized beams. By appropiately tuning the polarization of the beams one can achieve close to maximal values for the top quark polarization over most of the forward hemisphere for a large range of energies. This is quite welcome since the rate is largest in the forward hemisphere. One can also tune the beam polarization to obtain close to zero polarization over most of the forward hemisphere.
We study the triple Higgs self-coupling at future $e^{+}e^{-}$ colliders energies, with the reactions $e^{+}e^{-}to b bar b HH$ and $e^{+}e^{-}to t bar t HH$. We evaluate the total cross section of $bbar bHH$, $tbar tHH$ and calculate the total number of events considering the complete set of Feynman diagrams at tree-level. The sensitivity of the triple Higgs coupling is considered in the Higgs mass range 110-190 $GeV$, for the energy which is expected to be available at a possible Next Linear $e^{+}e^{-}$ Collider with a center-of-mass energy $800, 1000, 1500$ $GeV$ and luminosity 1000 $fb^{-1}$.
Information deformation and loss in jet clustering are one of the major limitations for precisely measuring hadronic events at future $e^-e^+$ colliders. Because of their dominance in data, the measurements of such events are crucial for advancing the precision frontier of Higgs and electroweak physics in the next decades. We show that this difficulty can be well-addressed by synergizing the event-level information into the data analysis, with the techniques of deep neutral network. In relation to this, we introduce a CMB-like observable scheme, where the event-level kinematics is encoded as Fox-Wolfram (FW) moments at leading order and multi-spectra at higher orders. Then we develop a series of jet-level (w/ and w/o the FW moments) and event-level classifiers, and analyze their sensitivity performance comparatively with two-jet and four-jet events. As an application, we analyze measuring Higgs decay width at $e^-e^+$ colliders with the data of 5ab$^{-1}@$240GeV. The precision obtained is significantly better than the baseline ones presented in documents. We expect this strategy to be applied to many other hadronic-event measurements at future $e^-e^+$ colliders, and to open a new angle for evaluating their physics capability.
Neutral triple gauge couplings (nTGCs) are absent in the standard model effective theory up to dimension-6 operators, but could arise from dimension-8 effective operators. In this work, we study the pure gauge operators of dimension-8 that contribute to nTGCs and are independent of the dimension-8 operator involving the Higgs doublet. We show that the pure gauge operators generate both $Zgamma Z^*$ and $Zgammagamma^*$ vertices with rapid energy dependence $propto E^5$, which can be probed sensitively via the reaction $e^+e^- to Zgamma$. We demonstrate that measuring the nTGCs via the reaction $e^+e^- to Zgamma$ followed by $Z to qbar{q}$ decays can probe the new physics scales of dimension-8 pure gauge operators up to the range $(1-5)$TeV at the CEPC, FCC-ee and ILC colliders with $sqrt{s}=(0.25-1)$TeV, and up to the range $(10-16)$TeV at CLIC with $sqrt{s}=(3-5)$TeV, assuming in each case an integrated luminosity of 5/ab. We compare these sensitivities with the corresponding probes of the dimension-8 nTGC operators involving Higgs doublets and the dimension-8 fermionic contact operators that contribute to the $e^+e^-Zgamma$ vertex.
472 - S. Groote , J.G. Korner , B. Melic 2010
We discuss in detail top quark polarization in above-threshold (t bar t)-production at a polarized linear e^+ e^- collider. We pay particular attention to the minimization and maximization of the polarization of the top quark by tuning the longitudinal polarization of the e^+ and e^- beams. The polarization of the top quark is calculated in full next-to-leading order QCD. We also discuss the beam polarization dependence of the longitudinal spin-spin correlations of the top and antitop quark spins.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا