Do you want to publish a course? Click here

Hysteresis Effects in Social Behavior with Parasitic Infection

358   0   0.0 ( 0 )
 Added by Michael Phillips
 Publication date 2019
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Recent work has found that the behavior of an individual can be altered when infected by a parasite. Here we explore the question: under what conditions, in principle, can a general parasitic infection control system-wide social behaviors? We analyze fixed points and hysteresis effects under the Master Equation, with transitions between two behaviors given two different subpopulations, healthy vs. parasitically-infected, within a population which is kept fixed overall. The key model choices are: (i) the internal opinion of infected humans may differ from that of the healthy population, (ii) the extent that interaction drives behavioral changes may also differ, and (iii) indirect interactions are most important. We find that the socio-configuration can be controlled by the parasitically-infected population, under some conditions, even if the healthy population is the majority and of opposite opinion.



rate research

Read More

In this paper, we introduce a novel modeling framework for incorporating fear of infection and frustration with social distancing into disease dynamics. We show that the resulting SEIR behavior-perception model has three principal modes of qualitative behavior---no outbreak, controlled outbreak, and uncontrolled outbreak. We also demonstrate that the model can produce transient and sustained waves of infection consistent with secondary outbreaks. We fit the model to cumulative COVID-19 case and mortality data from several regions. Our analysis suggests that regions which experience a significant decline after the first wave of infection, such as Canada and Israel, are more likely to contain secondary waves of infection, whereas regions which only achieve moderate success in mitigating the diseases spread initially, such as the United States, are likely to experience substantial secondary waves or uncontrolled outbreaks.
In this work, using a detailed dataset furnished by National Health Authorities concerning the Province of Pavia (Lombardy, Italy), we propose to determine the essential features of the ongoing COVID-19 pandemic in term of contact dynamics. Our contribution is devoted to provide a possible planning of the needs of medical infrastructures in the Pavia Province and to suggest different scenarios about the vaccination campaign which possibly help in reducing the fatalities and/or reducing the number of infected in the population. The proposed research combines a new mathematical description of the spread of an infectious diseases which takes into account both age and average daily social contacts with a detailed analysis of the dataset of all traced infected individuals in the Province of Pavia. These information are used to develop a data-driven model in which calibration and feeding of the model are extensively used. The epidemiological evolution is obtained by relying on an approach based on statistical mechanics. This leads to study the evolution over time of a system of probability distributions characterizing the age and social contacts of the population. One of the main outcomes shows that, as expected, the spread of the disease is closely related to the mean number of contacts of individuals. The model permits to forecast thanks to an uncertainty quantification approach and in the short time horizon, the average number and the confidence bands of expected hospitalized classified by age and to test different options for an effective vaccination campaign with age-decreasing priority.
It is well recognized that population heterogeneity plays an important role in the spread of epidemics. While individual variations in social activity are often assumed to be persistent, i.e. constant in time, here we discuss the consequences of dynamic heterogeneity. By integrating the stochastic dynamics of social activity into traditional epidemiological models we demonstrate the emergence of a new long timescale governing the epidemic in broad agreement with empirical data. Our model captures multiple features of real-life epidemics such as COVID-19, including prolonged plateaus and multiple waves, which are transiently suppressed due to the dynamic nature of social activity. The existence of the long timescale due to the interplay between epidemic and social dynamics provides a unifying picture of how a fast-paced epidemic typically will transition to the endemic state.
133 - Reginald D. Smith 2011
A general theory of top-down cascades in complex networks is described which explains two similar types of perturbation amplifications in the complex networks of business supply chains (the `bullwhip effect) and ecological food webs (trophic cascades). The dependence of the strength of the effects on the interaction strength and covariance in the dynamics as well as the graph structure allows both explanation and prediction of widely recognized effects in each type of system.
108 - Beatriz Seoane 2020
SARS-CoV-2 has disrupted the life of billions of people around the world since the first outbreak was officially declared in China at the beginning of 2020. Yet, important questions such as how deadly it is or its degree of spread within different countries remain unanswered. In this work, we exploit the `universal growth of the mortality rate with age observed in different countries since the beginning of their respective outbreaks, combined with the results of the antibody prevalence tests in the population of Spain, to unveil both unknowns. We validate these results with an analogous antibody rate survey in the canton of Geneva, Switzerland. We also argue that the official number of deaths over 70 years old is importantly underestimated in most of the countries, and we use the comparison between the official records with the number of deaths mentioning COVID-19 in the death certificates to quantify by how much. Using this information, we estimate the fatality infection ratio (IFR) for the different age segments and the fraction of the population infected in different countries assuming a uniform exposure to the virus in all age segments. We also give estimations for the non-uniform IFR using the sero-epidemiological results of Spain, showing a very similar growth of the fatality ratio with age. Only for Spain, we estimate the probability (if infected) of being identified as a case, being hospitalized or admitted in the intensive care units as function of age. In general, we observe a nearly exponential growth of the fatality ratio with age, which anticipates large differences in total IFR in countries with different demographic distributions, with numbers that range from 1.82% in Italy, to 0.62% in China or even 0.14% in middle Africa.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا