Do you want to publish a course? Click here

Propagation of Cascades in Complex Networks: From Supply Chains to Food Webs

150   0   0.0 ( 0 )
 Added by Reginald Smith
 Publication date 2011
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

A general theory of top-down cascades in complex networks is described which explains two similar types of perturbation amplifications in the complex networks of business supply chains (the `bullwhip effect) and ecological food webs (trophic cascades). The dependence of the strength of the effects on the interaction strength and covariance in the dynamics as well as the graph structure allows both explanation and prediction of widely recognized effects in each type of system.



rate research

Read More

Food webs represent the set of consumer-resource interactions among a set of species that co-occur in a habitat, but most food web studies have omitted parasites and their interactions. Recent studies have provided conflicting evidence on whether including parasites changes food web structure, with some suggesting that parasitic interactions are structurally distinct from those among free-living species while others claim the opposite. Here, we describe a principled method for understanding food web structure that combines an efficient optimization algorithm from statistical physics called parallel tempering with a probabilistic generalization of the empirically well-supported food web niche model. This generative model approach allows us to rigorously estimate the degree to which interactions that involve parasites are statistically distinguishable from interactions among free-living species, whether parasite niches behave similarly to free-living niches, and the degree to which existing hypotheses about food web structure are naturally recovered. We apply this method to the well-studied Flensburg Fjord food web and show that while predation on parasites, concomitant predation of parasites, and parasitic intraguild trophic interactions are largely indistinguishable from free-living predation interactions, parasite-host interactions are different. These results provide a powerful new tool for evaluating the impact of classes of species and interactions on food web structure to shed new light on the roles of parasites in food webs
Link failures repeatedly induce large-scale outages in power grids and other supply networks. Yet, it is still not well understood, which links are particularly prone to inducing such outages. Here we analyze how the nature and location of each link impact the networks capability to maintain stable supply. We propose two criteria to identify critical links on the basis of the topology and the load distribution of the network prior to link failure. They are determined via a links redundant capacity and a renormalized linear response theory we derive. These criteria outperform critical link prediction based on local measures such as loads. The results not only further our understanding of the physics of supply networks in general. As both criteria are available before any outage from the state of normal operation, they may also help real-time monitoring of grid operation, employing counter-measures and support network planning and design.
357 - Michael Phillips 2019
Recent work has found that the behavior of an individual can be altered when infected by a parasite. Here we explore the question: under what conditions, in principle, can a general parasitic infection control system-wide social behaviors? We analyze fixed points and hysteresis effects under the Master Equation, with transitions between two behaviors given two different subpopulations, healthy vs. parasitically-infected, within a population which is kept fixed overall. The key model choices are: (i) the internal opinion of infected humans may differ from that of the healthy population, (ii) the extent that interaction drives behavioral changes may also differ, and (iii) indirect interactions are most important. We find that the socio-configuration can be controlled by the parasitically-infected population, under some conditions, even if the healthy population is the majority and of opposite opinion.
Amidst the current COVID-19 pandemic, quantifying the effects of strategies that mitigate the spread of infectious diseases is critical. This article presents a compartmental model that addresses the role of random viral testing, follow-up contact tracing, and subsequent isolation of infectious individuals to stabilize the spread of a disease. We propose a branching model and an individual (or agent) based model, both of which capture the stochastic, heterogeneous nature of interactions within a community. The branching model is used to derive new analytical results for the trade-offs between the different mitigation strategies, with the surprising result that a communitys resilience to disease outbreaks is independent of its underlying network structure.
We propose a strategy based on the site-bond percolation to minimize the propagation of textit{Phytophthora} zoospores on plantations, consisting in introducing physical barriers between neighboring plants. Two clustering processes are distinguished: i) one of cells with the presence of the pathogen, detected on soil analysis; and ii) that of diseased plants, revealed from a visual inspection of the plantation. The former is well described by the standard site-bond percolation. In the latter, the percolation threshold is fitted by a Tsallis distribution when no barriers are introduced. We provide, for both cases, the formulae for the minimal barrier density to prevent the emergence of the spanning cluster. Though this work is focused on a specific pathogen, the model presented here can also be applied to prevent the spreading of other pathogens that disseminate, by other means, from one plant to the neighboring ones. Finally, the application of this strategy to three types of commercialy important Mexican chili plants is also shown.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا