Do you want to publish a course? Click here

Photonic hook -- a new type of subwavelength self-bending structured light beams: a tutorial review

74   0   0.0 ( 0 )
 Added by Igor V Minin
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

During the last 2 years, it was shown that an electromagnetic beam configuration can be bent after propagation through an asymmetrically shaped (Janus) dielectric particle, which adds a new degree of simplicity for generation of a curved light beam. This effect is termed photonic hook (PH) and differs from Airy-family beams. PH features the smallest curvature radius of electromagnetic waves ever reported which is about 2 times smaller than the wavelength of the electromagnetic wave. The nature of a photonic hook is a the dispersion of the phase velocity of the waves inside a trapezoid or composed particle, resulting in an interference afterwards.



rate research

Read More

It is well-known that electromagnetic radiation propagates along a straight line, but this common sense was broken by the artificial curved light - Airy beam. In this paper, we demonstrate a new type of curved light beam besides Airy beam, so called photonic hook. This photonic hook is a curved high-intensity focus by a dielectric trapezoid particle illuminated by a plane wave. The difference of the phase velocity and the interference of the waves inside the particle cause the phenomenon of focus bending.
The control of structured waves has recently opened innovative scenarios in the perspective of radiation propagation and light-matter interaction. In particular, the transmission of customized electromagnetic fields is investigated for telecommunications, with the aim of exploring new modulation formats besides the traditional, almost saturated, division multiplexing techniques. Beams carrying twisted wavefronts have long been recognized as the promising candidates, however their phase singularities and efficient multiplexing still raise open issues. In a more general insight into structured-phase beams, we introduce and develop here a new and unique paradigm based on the transmission of beams with harmonic phases having a multipole structure. The outlined framework encompasses multiplexing, transmission, and demultiplexing as a whole for the first time, describing wavefields evolution in terms of conformal mappings, and solving straightforwardly the critical issues of previous solutions. Because of its potentialities, versatility, and ease of implementation, we expect this completely new paradigm to find widespread applications for space division multiplexing especially in free space, from the optical to the microwave and radio regimes.
Recently, two special photonic jets, photonic hooks and twin photonic jets, have been proposed to deal with complex conditions in nanoscale manipulation. Photonic hooks are generated by a single light plane wave and an asymmetric microparticle, while the twin photonic jets are produced by two incident light beams. In this letter, we presented and demonstrate a method to combine photonic hooks and twin photonic jets. A single light plane wave and a symmetric microparticle, twin-ellipse microcylinder, are used in this research. The curvature degree, length and maximum E2 filed enhancement of twin photonic hooks are varied significantly, with the change of refractive indices and shape of twin-ellipse microcylinder. And a liquid-immersed core-shell is built to achieve a flexible tunability.
This tutorial review provides a guiding reference to researchers who want to have an overview of the large body of literature about graph spanners. It reviews the current literature covering various research streams about graph spanners, such as different formulations, sparsity and lightness results, computational complexity, dynamic algorithms, and applications. As an additional contribution, we offer a list of open problems on graph spanners.
66 - David A. B. Miller 2016
Optics offers unique opportunities for reducing energy in information processing and communications while resolving the problem of interconnect bandwidth density inside machines. Such energy dissipation overall is now at environmentally significant levels; the source of that dissipation is progressively shifting from logic operations to interconnect energies. Without the prospect of substantial reduction in energy per bit communicated, we cannot continue the exponential growth of our use of information. The physics of optics and optoelectronics fundamentally addresses both interconnect energy and bandwidth density, and optics may be the only scalable solution to such problems. Here we summarize the corresponding background, status, opportunities, and research directions for optoelectronic technology and novel optics, including sub-femtojoule devices in waveguide and novel 2D array optical systems. We compare different approaches to low-energy optoelectronic output devices and their scaling, including lasers, modulators and LEDs, optical confinement approaches (such as resonators) to enhance effects, and the benefits of different material choices, including 2D materials and other quantum-confined structures. Beyond the elimination of line charging by the use optical connections, the next major interconnect dissipations are in the electronic circuits for receiver amplifiers, timing recovery and multiplexing. We can address these through the integration of photodetectors to reduce or eliminate receiver circuit energies, free-space optics to eliminate the need for timing and multiplexing circuits (while solving bandwidth density problems), and using optics generally to save power by running large synchronous systems. One target concept is interconnects from ~ 1 cm to ~ 10 m that have the same energy (~ 10fJ/bit) and simplicity as local electrical wires on chip.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا