No Arabic abstract
Solitons are important nonperturbative excitations in superfluids. For holographic superfluids, we numerically construct dark solitons that have the symmetry-restored phase at their core. A central point is that we include the gravitational back-reaction of the matter fields, which becomes important at low temperatures. We study in detail the properties of these solitons under variation of the back-reaction strength via tuning the gravitational constant. In particular, the depletion fraction of the particle number density at the core of the solitons is carefully investigated. In agreement with the probe-limit analysis, the depletion fraction shows the same qualitative behavior as in Bogoliubov-de Gennes (BdG) theory, even if the back-reaction is included. We find that the depletion decreases with increasing back-reaction strength. Moreover, the inclusion of back-reaction enables us to obtain the effective energy density of solitons within holography, which together with an evaluation of the surface tension leads to a simple physical explanation for the snake instability of dark solitons.
We construct the holographic p-wave superfluid in Gauss-Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss-Bonnet parameter and agree well with the Ginzburg-Landau prediction.
We investigate the holographic p-wave superfluid in the background metric of the AdS soliton with $RF^{2}$ corrections. Two models, namely, the Maxwell complex vector field model and Yang-Mills theory, are studied in the above context by employing the Sturm-Liouville approach as well as the shooting method. When turning on the spatial components of the gauge field, one observes that, in the probe limit, the inclusion of $RF^{2}$ corrections hinders the superfluid phase transition. On the other hand, however, in the absence of the superfluid velocity, it is found that the $RF^2$ corrections lead to distinct effects for the two models. Regardless of either the $RF^2$ correction or the spatial component of the gauge field, the phase transition of the system is observed to be always of the second order. Moreover, a linear relationship between the charge density and chemical potential is largely established near the critical point in both holographic superfluid models.
Four-dimensional $mathcal{N}=4$ supersymmetric Yang-Mills theory, at a point on the Coulomb branch where $SU(N)$ gauge symmetry is spontaneously broken to $SU(N-1)times U(1)$, admits BPS solitons describing a spherical shell of electric and/or magnetic charges enclosing a region of unbroken gauge symmetry. These solitons have been proposed as gauge theory models for certain features of asymptotically flat extremal black holes. In the t Hooft large $N$ limit with large t Hooft coupling, these solitons are holographically dual to certain probe D3-branes in the $AdS_5 times S^5$ solution of type IIB supergravity. By studying linearised perturbations of these D3-branes, we show that the solitons support quasinormal modes with a spectrum of frequencies sharing both qualitative and quantitative features with asymptotically flat extremal black holes.
We numerically investigate some properties of unbalanced St{u}ckelberg holographic superconductors, by considering backreaction effects of fields on the background geometry. More precisely, we study the impacts of the chemical potential mismatch and St{u}ckelberg mechanism on the condensation and conductivity types (electrical, spin, mixed, thermo-electric, thermo-spin and thermal conductivity). Our results show that the St{u}ckelbergs model parameters $C_{alpha}$ and $alpha$ not only have significant impacts on the phase transition, but also affect the conductivity pseudo-gap and the strength of conductivity fluctuations. Moreover, the effects of these parameters on a system will be gradually reduced as the imbalance grows. We also find that the influence of $alpha$ on the amplitude of conductivity fluctuations depends on the magnitude of the both $C_{alpha}$ and $deltamu/mu$ in the electric and thermal conductivity cases. This results in that increasing $alpha$ can damp the conductivity fluctuations of an unbalanced system in contrast to balanced ones.
We study the hydrodynamic excitations of backreacted holographic superfluids by computing the full set of quasinormal modes (QNMs) at finite momentum and matching them to the existing hydrodynamic theory of superfluids. Additionally, we analyze the behavior of the low-energy excitations in real frequency and complex momentum, going beyond the standard QNM picture. Finally, we carry out a novel type of study of the model by computing the support of the hydrodynamic modes across the phase diagram. We achieve this by determining the support of the corresponding QNMs on the different operators in the dual theory, both in complex frequency and complex momentum space. From the support, we are able to reconstruct the hydrodynamic dispersion relations using the hydrodynamic constitutive relations. Our analysis rules out a role-reversal phenomenon between first and second sound in this model, contrary to results obtained in a weakly coupled field theory framework.