Do you want to publish a course? Click here

The Mass-Metallicity Relation at $zsim0.8$: Redshift Evolution and Parameter Dependency

78   0   0.0 ( 0 )
 Added by Chi Huang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spectra of emission-line galaxies (ELGs) from the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digit Sky Survey (SDSS) are used to study the mass-metallicity relation (MZR) at $zsim0.8$. The selected sample contains about 180,000 massive star-forming galaxies with $0.6 < z < 1.05$ and $9 < {rm log}(M_{star}/M_{odot}) < 12$. The spectra are stacked in bins of different parameters including redshift, stellar mass, star formation rate (SFR), specific star formation rate (sSFR), half-light radius, mass density, and optical color. The average MZR at $zsim0.83$ has a downward evolution in the MZR from local to high-redshift universe, which is consistent with previous works. At a specified stellar mass, galaxies with higher SFR/sSFR and larger half-light radius have systematically lower metallicity. This behavior is reversed for galaxies with larger mass density and optical color. Among the above physical parameters, the MZR has the most significant dependency on SFR. Our galaxy sample at $0.6<z<1.05$ approximately follows the fundamental metallicity relation (FMR) in the local universe, although the sample inhomogeneity and incompleteness might have effect on our MZR and FMR.



rate research

Read More

We present the results from a large near-infrared spectroscopic survey with Subaru/FMOS (textit{FastSound}) consisting of $sim$ 4,000 galaxies at $zsim1.4$ with significant H$alpha$ detection. We measure the gas-phase metallicity from the [N~{sc ii}]$lambda$6583/H$alpha$ emission line ratio of the composite spectra in various stellar mass and star-formation rate bins. The resulting mass-metallicity relation generally agrees with previous studies obtained in a similar redshift range to that of our sample. No clear dependence of the mass-metallicity relation with star-formation rate is found. Our result at $zsim1.4$ is roughly in agreement with the fundamental metallicity relation at $zsim0.1$ with fiber aperture corrected star-formation rate. We detect significant [S~{sc ii}]$lambdalambda$6716,6731 emission lines from the composite spectra. The electron density estimated from the [S~{sc ii}]$lambdalambda$6716,6731 line ratio ranges from 10 -- 500 cm$^{-3}$, which generally agrees with that of local galaxies. On the other hand, the distribution of our sample on [N~{sc ii}]$lambda$6583/H$alpha$ vs. [S~{sc ii}]$lambdalambda$6716,6731/H$alpha$ is different from that found locally. We estimate the nitrogen-to-oxygen abundance ratio (N/O) from the N2S2 index, and find that the N/O in galaxies at $zsim1.4$ is significantly higher than the local values at a fixed metallicity and stellar mass. The metallicity at $zsim1.4$ recalculated with this N/O enhancement taken into account decreases by 0.1 -- 0.2 dex. The resulting metallicity is lower than the local fundamental metallicity relation.
133 - Xiangcheng Ma 2015
We use high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environment (FIRE) project to study the galaxy mass-metallicity relations (MZR) from z=0-6. These simulations include explicit models of the multi-phase ISM, star formation, and stellar feedback. The simulations cover halo masses Mhalo=10^9-10^13 Msun and stellar mass Mstar=10^4-10^11 Msun at z=0 and have been shown to produce many observed galaxy properties from z=0-6. For the first time, our simulations agree reasonably well with the observed mass-metallicity relations at z=0-3 for a broad range of galaxy masses. We predict the evolution of the MZR from z=0-6 as log(Zgas/Zsun)=12+log(O/H)-9.0=0.35[log(Mstar/Msun)-10]+0.93 exp(-0.43 z)-1.05 and log(Zstar/Zsun)=[Fe/H]-0.2=0.40[log(Mstar/Msun)-10]+0.67 exp(-0.50 z)-1.04, for gas-phase and stellar metallicity, respectively. Our simulations suggest that the evolution of MZR is associated with the evolution of stellar/gas mass fractions at different redshifts, indicating the existence of a universal metallicity relation between stellar mass, gas mass, and metallicities. In our simulations, galaxies above Mstar=10^6 Msun are able to retain a large fraction of their metals inside the halo, because metal-rich winds fail to escape completely and are recycled into the galaxy. This resolves a long-standing discrepancy between sub-grid wind models (and semi-analytic models) and observations, where common sub-grid models cannot simultaneously reproduce the MZR and the stellar mass functions.
125 - Ivo Saviane 2014
Our research on the age-metallicity and mass-metallicity relations of galaxies is presented and compared to the most recent investigations in the field. We have been able to measure oxygen abundances using the direct method for objects spanning four orders of magnitude in mass, and probing the last 4 Gyr of galaxy evolution. We have found preliminary evidence that the metallicity evolution is consistent with expectations based on age-metallicity relations obtained with low resolution stellar spectra of resolved Local Group galaxies.
We use fossil record techniques on the CALIFA sample to study how galaxies in the local universe have evolved in terms of their chemical content. We show how the metallicity and the mass-metallicity relation (MZR) evolve through time for the galaxies in our sample and how this evolution varies when we divide them based on their mass, morphology and star-forming status. We also check the impact of measuring the metallicity at the centre or the outskirts. We find the expected results that the most massive galaxies got enriched faster, with the MZR getting steeper at higher redshifts. However, once we separate the galaxies into morphology bins this behaviour is not as clear, which suggests that morphology is a primary factor to determine how fast a galaxy gets enriched, with mass determining the amount of enrichment. We also find that star-forming galaxies appear to be converging in their chemical evolution, that is, the metallicity of star-forming galaxies of different mass is very similar at recent times compared to several Gyr ago.
132 - Stephanie Juneau 2014
Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish AGN from purely star-forming galaxies. Yet, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z~0 reference sample built from ~300,000 SDSS galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predict the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z~1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal ISM properties out to z~1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies, and may be more important starting at z>2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams, and the MZ relation as a function of emission line luminosity limits, is made publicly available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا