Do you want to publish a course? Click here

The mass-metallicity relation of galaxies up to redshift 0.35

133   0   0.0 ( 0 )
 Added by Ivo Saviane
 Publication date 2014
  fields Physics
and research's language is English
 Authors Ivo Saviane




Ask ChatGPT about the research

Our research on the age-metallicity and mass-metallicity relations of galaxies is presented and compared to the most recent investigations in the field. We have been able to measure oxygen abundances using the direct method for objects spanning four orders of magnitude in mass, and probing the last 4 Gyr of galaxy evolution. We have found preliminary evidence that the metallicity evolution is consistent with expectations based on age-metallicity relations obtained with low resolution stellar spectra of resolved Local Group galaxies.



rate research

Read More

145 - Stephanie Juneau 2014
Emission line diagnostic diagrams probing the ionization sources in galaxies, such as the Baldwin-Phillips-Terlevich (BPT) diagram, have been used extensively to distinguish AGN from purely star-forming galaxies. Yet, they remain poorly understood at higher redshifts. We shed light on this issue with an empirical approach based on a z~0 reference sample built from ~300,000 SDSS galaxies, from which we mimic selection effects due to typical emission line detection limits at higher redshift. We combine this low-redshift reference sample with a simple prescription for luminosity evolution of the global galaxy population to predict the loci of high-redshift galaxies on the BPT and Mass-Excitation (MEx) diagnostic diagrams. The predicted bivariate distributions agree remarkably well with direct observations of galaxies out to z~1.5, including the observed stellar mass-metallicity (MZ) relation evolution. As a result, we infer that high-redshift star-forming galaxies are consistent with having normal ISM properties out to z~1.5, after accounting for selection effects and line luminosity evolution. Namely, their optical line ratios and gas-phase metallicities are comparable to that of low-redshift galaxies with equivalent emission-line luminosities. In contrast, AGN narrow-line regions may show a shift toward lower metallicities at higher redshift. While a physical evolution of the ISM conditions is not ruled out for purely star-forming galaxies, and may be more important starting at z>2, we find that reliably quantifying this evolution is hindered by selections effects. The recipes provided here may serve as a basis for future studies toward this goal. Code to predict the loci of galaxies on the BPT and MEx diagnostic diagrams, and the MZ relation as a function of emission line luminosity limits, is made publicly available.
We study the origin and cosmic evolution of the mass-metallicity relation (MZR) in star-forming galaxies based on a full, numerical chemical evolution model. The model was designed to match the local MZRs for both gas and stars simultaneously. This is achieved by invoking a time-dependent metal enrichment process which assumes either a time-dependent metal outflow with larger metal loading factors in galactic winds at early times, or a time-dependent Initial Mass Function (IMF) with steeper slopes at early times. We compare the predictions from this model with data sets covering redshifts 0<z<3.5. The data suggests a two-phase evolution with a transition point around z ~ 1.5. Before that epoch the MZRgas has been evolving parallel with no evolution in the slope. After z ~ 1.5 the MZRgas started flattening until today. We show that the predictions of both the variable metal outflow and the variable IMF model match these observations very well. Our model also reproduces the evolution of the main sequence, hence the correlation between galaxy mass and star formation rate. We also compare the predicted redshift evolution of the MZRstar with data from the literature. As the latter mostly contains data of massive, quenched early-type galaxies, stellar metallicities at high redshifts tend to be higher in the data than predicted by our model. Data of stellar metallicities of lower-mass (< 10^11 solar mass), star-forming galaxies at high redshift is required to test our model.
Dwarf galaxies generally follow a mass-metallicity (MZ) relation, where more massive objects retain a larger fraction of heavy elements. Young tidal dwarf galaxies (TDGs), born in the tidal tails produced by interacting gas-rich galaxies, have been thought to not follow the MZ relation, because they inherit the metallicity of the more massive parent galaxies. We present chemical evolution models to investigate if TDGs that formed at very high redshifts, where the metallicity of their parent galaxy was very low, can produce the observed MZ relation. Assuming that galaxy interactions were more frequent in the denser high-redshift universe, TDGs could constitute an important contribution to the dwarf galaxy population. The survey of chemical evolution models of TDGs presented here captures for the first time an initial mass function (IMF) of stars that is dependent on both the star formation rate and the gas metallicity via the integrated galactic IMF (IGIMF) theory. As TDGs form in the tidal debris of interacting galaxies, the pre-enrichment of the gas, an underlying pre-existing stellar population, infall, and mass dependent outflows are considered. The models of young TDGs that are created in strongly pre-enriched tidal arms with a pre-existing stellar population can explain the measured abundance ratios of observed TDGs. The same chemical evolution models for TDGs, that form out of gas with initially very low metallicity, naturally build up the observed MZ relation. The modelled chemical composition of ancient TDGs is therefore consistent with the observed MZ relation of satellite galaxies.
The relation between infrared excess (IRX) and UV spectral slope ($beta_{rm UV}$) is an empirical probe of dust properties of galaxies. The shape, scatter, and redshift evolution of this relation are not well understood, however, leading to uncertainties in estimating the dust content and star formation rates (SFRs) of galaxies at high redshift. In this study, we explore the nature and properties of the IRX-$beta_{rm UV}$ relation with a sample of $z=2-6$ galaxies ($M_*approx 10^9-10^{12},M_odot$) extracted from high-resolution cosmological simulations (MassiveFIRE) of the Feedback in Realistic Environments (FIRE) project. The galaxies in our sample show an IRX-$beta_{rm UV}$ relation that is in good agreement with the observed relation in nearby galaxies. IRX is tightly coupled to the UV optical depth, and is mainly determined by the dust-to-star geometry instead of total dust mass, while $beta_{rm UV}$ is set both by stellar properties, UV optical depth, and the dust extinction law. Overall, much of the scatter in the IRX-$beta_{rm UV}$ relation of our sample is found to be driven by variations of the intrinsic UV spectral slope. We further assess how the IRX-$beta_{rm UV}$ relation depends on viewing direction, dust-to-metal ratio, birth-cloud structures, and the dust extinction law and we present a simple model that encapsulates most of the found dependencies. Consequently, we argue that the reported `deficit of the infrared/sub-millimetre bright objects at $z>5$ does not necessarily imply a non-standard dust extinction law at those epochs.
143 - Xiangcheng Ma 2015
We use high-resolution cosmological zoom-in simulations from the Feedback in Realistic Environment (FIRE) project to study the galaxy mass-metallicity relations (MZR) from z=0-6. These simulations include explicit models of the multi-phase ISM, star formation, and stellar feedback. The simulations cover halo masses Mhalo=10^9-10^13 Msun and stellar mass Mstar=10^4-10^11 Msun at z=0 and have been shown to produce many observed galaxy properties from z=0-6. For the first time, our simulations agree reasonably well with the observed mass-metallicity relations at z=0-3 for a broad range of galaxy masses. We predict the evolution of the MZR from z=0-6 as log(Zgas/Zsun)=12+log(O/H)-9.0=0.35[log(Mstar/Msun)-10]+0.93 exp(-0.43 z)-1.05 and log(Zstar/Zsun)=[Fe/H]-0.2=0.40[log(Mstar/Msun)-10]+0.67 exp(-0.50 z)-1.04, for gas-phase and stellar metallicity, respectively. Our simulations suggest that the evolution of MZR is associated with the evolution of stellar/gas mass fractions at different redshifts, indicating the existence of a universal metallicity relation between stellar mass, gas mass, and metallicities. In our simulations, galaxies above Mstar=10^6 Msun are able to retain a large fraction of their metals inside the halo, because metal-rich winds fail to escape completely and are recycled into the galaxy. This resolves a long-standing discrepancy between sub-grid wind models (and semi-analytic models) and observations, where common sub-grid models cannot simultaneously reproduce the MZR and the stellar mass functions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا