No Arabic abstract
Incoherent Fourier ptychography (IFP) is a newly developed super-resolution method, where accurate knowledge of translation positions is essential for image reconstruction.To release this limitation, we propose a preprocessing algorithm capable of extracting translation positions of the structure light directly from raw images of IFP, termed translation position extracting (TPE). TPE mainly involves two steps. First, the speckle parts mixed in the acquired intensities, in which the illumination motion is encoded, are isolated by intensity averaging and division. Then the cross-correlations of the speckle dataset are computed to determine the shift positions. TPE-IFP improves the previous IFP by removal of the requirement for prior knowledge of translation positions. Its effectiveness is demonstrated by obtaining high-quality super-resolution images in absence of location information in both simulations and experiments. By further relaxing the practical conditions, the proposed TPE may accelerate the applications of IFP. What is more, as a preprocessing approach, TPE might also contribute to the estimation of pattern positions for the similar speckle-based imaging.
Ptychography, a form of Coherent Diffractive Imaging, is used with short wavelengths (e.g. X-rays, electron beams) to achieve high-resolution image reconstructions. One of the limiting factors for the reconstruction quality is the accurate knowledge of the illumination probe positions. Recently, many advances have been made to relax the requirement for the probe positions accuracy. Here, we analyze and demonstrate a straightforward approach that can be used to correct the probe positions with sub-pixel accuracy. Simulations and experimental results with visible light are presented in this work.
We present a parameter retrieval method which combines ptychography and additional prior knowledge about the object. The proposed method is applied to two applications: (1) parameter retrieval of small particles from Fourier ptychographic dark field measurements; (2) parameter retrieval of retangule with real-space ptychography. The influence of Poisson noise is discussed in the second part of the paper. The Cram{e}r Rao Lower Bound in both two applications is computed and Monte Carlo analysis is used to verify the calculated lower bound. With the computation results we report the lower bound for various noise levels and the correlation of particles in Application 1. For Application 2 the correlation of parameters of the rectangule is discussed.
The pressing need for the detailed wavefront properties of ultra-bright and ultra-short pulses produced by free-electron lasers (FELs) has spurred the development of several complementary characterization approaches. Here we present a method based on ptychography that can retrieve full high-resolution complex-valued wave functions of individual pulses. Our technique is demonstrated within experimental conditions suited for diffraction experiments in their native imaging state. This lensless technique, applicable to many other short-pulse instruments, can achieve diffraction-limited resolution.
The theory of semiparametric estimation offers an elegant way of computing the Cramer-Rao bound for a parameter of interest in the midst of infinitely many nuisance parameters. Here I apply the theory to the problem of moment estimation for incoherent imaging under the effects of diffraction and photon shot noise. Using a Hilbert-space formalism designed for Poisson processes, I derive exact semiparametric Cramer-Rao bounds and efficient estimators for both direct imaging and a quantum-inspired measurement method called spatial-mode demultiplexing (SPADE). The results establish the superiority of SPADE even when little prior information about the object is available.
Light field microscopy (LFM) uses a microlens array (MLA) near the sensor plane of a microscope to achieve single-shot 3D imaging of a sample without any moving parts. Unfortunately, the 3D capability of LFM comes with a significant loss of lateral resolution at the focal plane. Placing the MLA near the pupil plane of the microscope, instead of the image plane, can mitigate the artifacts and provide an efficient forward model, at the expense of field-of-view (FOV). Here, we demonstrate improved resolution across a large volume with Fourier DiffuserScope, which uses a diffuser in the pupil plane to encode 3D information, then computationally reconstructs the volume by solving a sparsity-constrained inverse problem. Our diffuser consists of randomly placed microlenses with varying focal lengths; the random positions provide a larger FOV compared to a conventional MLA, and the diverse focal lengths improve the axial depth range. To predict system performance based on diffuser parameters, we for the first time establish a theoretical framework and design guidelines, which are verified by numerical simulations, then build an experimental system that achieves $< 3$ um lateral and $4$ um axial resolution over a $1000 times 1000 times 280$ um$^3$ volume. Our diffuser design outperforms the MLA used in LFM, providing more uniform resolution over a larger volume, both laterally and axially.