No Arabic abstract
Corpus-based set expansion (i.e., finding the complete set of entities belonging to the same semantic class, based on a given corpus and a tiny set of seeds) is a critical task in knowledge discovery. It may facilitate numerous downstream applications, such as information extraction, taxonomy induction, question answering, and web search. To discover new entities in an expanded set, previous approaches either make one-time entity ranking based on distributional similarity, or resort to iterative pattern-based bootstrapping. The core challenge for these methods is how to deal with noisy context features derived from free-text corpora, which may lead to entity intrusion and semantic drifting. In this study, we propose a novel framework, SetExpan, which tackles this problem, with two techniques: (1) a context feature selection method that selects clean context features for calculating entity-entity distributional similarity, and (2) a ranking-based unsupervised ensemble method for expanding entity set based on denoised context features. Experiments on three datasets show that SetExpan is robust and outperforms previous state-of-the-art methods in terms of mean average precision.
Given a small set of seed entities (e.g., ``USA, ``Russia), corpus-based set expansion is to induce an extensive set of entities which share the same semantic class (Country in this example) from a given corpus. Set expansion benefits a wide range of downstream applications in knowledge discovery, such as web search, taxonomy construction, and query suggestion. Existing corpus-based set expansion algorithms typically bootstrap the given seeds by incorporating lexical patterns and distributional similarity. However, due to no negative sets provided explicitly, these methods suffer from semantic drift caused by expanding the seed set freely without guidance. We propose a new framework, Set-CoExpan, that automatically generates auxiliary sets as negative sets that are closely related to the target set of users interest, and then performs multiple sets co-expansion that extracts discriminative features by comparing target set with auxiliary sets, to form multiple cohesive sets that are distinctive from one another, thus resolving the semantic drift issue. In this paper we demonstrate that by generating auxiliary sets, we can guide the expansion process of target set to avoid touching those ambiguous areas around the border with auxiliary sets, and we show that Set-CoExpan outperforms strong baseline methods significantly.
Entity set expansion, aiming at expanding a small seed entity set with new entities belonging to the same semantic class, is a critical task that benefits many downstream NLP and IR applications, such as question answering, query understanding, and taxonomy construction. Existing set expansion methods bootstrap the seed entity set by adaptively selecting context features and extracting new entities. A key challenge for entity set expansion is to avoid selecting ambiguous context features which will shift the class semantics and lead to accumulative errors in later iterations. In this study, we propose a novel iterative set expansion framework that leverages automatically generated class names to address the semantic drift issue. In each iteration, we select one positive and several negative class names by probing a pre-trained language model, and further score each candidate entity based on selected class names. Experiments on two datasets show that our framework generates high-quality class names and outperforms previous state-of-the-art methods significantly.
In this paper, we define and study a new task called Context-Aware Semantic Expansion (CASE). Given a seed term in a sentential context, we aim to suggest other terms that well fit the context as the seed. CASE has many interesting applications such as query suggestion, computer-assisted writing, and word sense disambiguation, to name a few. Previous explorations, if any, only involve some similar tasks, and all require human annotations for evaluation. In this study, we demonstrate that annotations for this task can be harvested at scale from existing corpora, in a fully automatic manner. On a dataset of 1.8 million sentences thus derived, we propose a network architecture that encodes the context and seed term separately before suggesting alternative terms. The context encoder in this architecture can be easily extended by incorporating seed-aware attention. Our experiments demonstrate that competitive results are achieved with appropriate choices of context encoder and attention scoring function.
Measuring research impact and ranking academic achievement are important and challenging problems. Having an objective picture of research institution is particularly valuable for students, parents and funding agencies, and also attracts attention from government and industry. KDD Cup 2016 proposes the paper acceptance rank prediction task, in which the participants are asked to rank the importance of institutions based on predicting how many of their papers will be accepted at the 8 top conferences in computer science. In our work, we adopt a three-step feature engineering method, including basic features definition, finding similar conferences to enhance the feature set, and dimension reduction using PCA. We propose three ranking models and the ensemble methods for combining such models. Our experiment verifies the effectiveness of our approach. In KDD Cup 2016, we achieved the overall rank of the 2nd place.
There exist many high-dimensional data in real-world applications such as biology, computer vision, and social networks. Feature selection approaches are devised to confront with high-dimensional data challenges with the aim of efficient learning technologies as well as reduction of models complexity. Due to the hardship of labeling on these datasets, there are a variety of approaches on feature selection process in an unsupervised setting by considering some important characteristics of data. In this paper, we introduce a novel unsupervised feature selection approach by applying dictionary learning ideas in a low-rank representation. Dictionary learning in a low-rank representation not only enables us to provide a new representation, but it also maintains feature correlation. Then, spectral analysis is employed to preserve sample similarities. Finally, a unified objective function for unsupervised feature selection is proposed in a sparse way by an $ell_{2,1}$-norm regularization. Furthermore, an efficient numerical algorithm is designed to solve the corresponding optimization problem. We demonstrate the performance of the proposed method based on a variety of standard datasets from different applied domains. Our experimental findings reveal that the proposed method outperforms the state-of-the-art algorithm.