No Arabic abstract
Collections of images under a single, uncontrolled illumination have enabled the rapid advancement of core computer vision tasks like classification, detection, and segmentation. But even with modern learning techniques, many inverse problems involving lighting and material understanding remain too severely ill-posed to be solved with single-illumination datasets. To fill this gap, we introduce a new multi-illumination dataset of more than 1000 real scenes, each captured under 25 lighting conditions. We demonstrate the richness of this dataset by training state-of-the-art models for three challenging applications: single-image illumination estimation, image relighting, and mixed-illuminant white balance.
The hypothesis that image datasets gathered online in the wild can produce biased object recognizers, e.g. preferring professional photography or certain viewing angles, is studied. A new in the lab data collection infrastructure is proposed consisting of a drone which captures images as it circles around objects. Crucially, the control provided by this setup and the natural camera shake inherent to flight mitigate many biases. Its inexpensive and easily replicable nature may also potentially lead to a scalable data collection effort by the vision community. The procedures usefulness is demonstrated by creating a dataset of Objects Obtained With fLight (OOWL). Denoted as OOWL500, it contains 120,000 images of 500 objects and is the largest in the lab image dataset available when both number of classes and objects per class are considered. Furthermore, it has enabled several of new insights on object recognition. First, a novel adversarial attack strategy is proposed, where image perturbations are defined in terms of semantic properties such as camera shake and pose. Indeed, experiments have shown that ImageNet has considerable amounts of pose and professional photography bias. Second, it is used to show that the augmentation of in the wild datasets, such as ImageNet, with in the lab data, such as OOWL500, can significantly decrease these biases, leading to object recognizers of improved generalization. Third, the dataset is used to study questions on best procedures for dataset collection. It is revealed that data augmentation with synthetic images does not suffice to eliminate in the wild datasets biases, and that camera shake and pose diversity play a more important role in object recognition robustness than previously thought.
Face tracking serves as the crucial initial step in mobile applications trying to analyse target faces over time in mobile settings. However, this problem has received little attention, mainly due to the scarcity of dedicated face tracking benchmarks. In this work, we introduce MobiFace, the first dataset for single face tracking in mobile situations. It consists of 80 unedited live-streaming mobile videos captured by 70 different smartphone users in fully unconstrained environments. Over $95K$ bounding boxes are manually labelled. The videos are carefully selected to cover typical smartphone usage. The videos are also annotated with 14 attributes, including 6 newly proposed attributes and 8 commonly seen in object tracking. 36 state-of-the-art trackers, including facial landmark trackers, generic object trackers and trackers that we have fine-tuned or improved, are evaluated. The results suggest that mobile face tracking cannot be solved through existing approaches. In addition, we show that fine-tuning on the MobiFace training data significantly boosts the performance of deep learning-based trackers, suggesting that MobiFace captures the unique characteristics of mobile face tracking. Our goal is to offer the community a diverse dataset to enable the design and evaluation of mobile face trackers. The dataset, annotations and the evaluation server will be on url{https://mobiface.github.io/}.
Together with the recent advances in semantic segmentation, many domain adaptation methods have been proposed to overcome the domain gap between training and deployment environments. However, most previous studies use limited combinations of source/target datasets, and domain adaptation techniques have never been thoroughly evaluated in a more challenging and diverse set of target domains. This work presents a new multi-domain dataset DRIV100 for benchmarking domain adaptation techniques on in-the-wild road-scene videos collected from the Internet. The dataset consists of pixel-level annotations for 100 videos selected to cover diverse scenes/domains based on two criteria; human subjective judgment and an anomaly score judged using an existing road-scene dataset. We provide multiple manually labeled ground-truth frames for each video, enabling a thorough evaluation of video-level domain adaptation where each video independently serves as the target domain. Using the dataset, we quantify domain adaptation performances of state-of-the-art methods and clarify the potential and novel challenges of domain adaptation techniques. The dataset is available at https://doi.org/10.5281/zenodo.4389243.
Hateful memes pose a unique challenge for current machine learning systems because their message is derived from both text- and visual-modalities. To this effect, Facebook released the Hateful Memes Challenge, a dataset of memes with pre-extracted text captions, but it is unclear whether these synthetic examples generalize to `memes in the wild. In this paper, we collect hateful and non-hateful memes from Pinterest to evaluate out-of-sample performance on models pre-trained on the Facebook dataset. We find that memes in the wild differ in two key aspects: 1) Captions must be extracted via OCR, injecting noise and diminishing performance of multimodal models, and 2) Memes are more diverse than `traditional memes, including screenshots of conversations or text on a plain background. This paper thus serves as a reality check for the current benchmark of hateful meme detection and its applicability for detecting real world hate.
Aerial scene recognition is a fundamental research problem in interpreting high-resolution aerial imagery. Over the past few years, most studies focus on classifying an image into one scene category, while in real-world scenarios, it is more often that a single image contains multiple scenes. Therefore, in this paper, we investigate a more practical yet underexplored task -- multi-scene recognition in single images. To this end, we create a large-scale dataset, called MultiScene, composed of 100,000 unconstrained high-resolution aerial images. Considering that manually labeling such images is extremely arduous, we resort to low-cost annotations from crowdsourcing platforms, e.g., OpenStreetMap (OSM). However, OSM data might suffer from incompleteness and incorrectness, which introduce noise into image labels. To address this issue, we visually inspect 14,000 images and correct their scene labels, yielding a subset of cleanly-annotated images, named MultiScene-Clean. With it, we can develop and evaluate deep networks for multi-scene recognition using clean data. Moreover, we provide crowdsourced annotations of all images for the purpose of studying network learning with noisy labels. We conduct experiments with extensive baseline models on both MultiScene-Clean and MultiScene to offer benchmarks for multi-scene recognition in single images and learning from noisy labels for this task, respectively. To facilitate progress, we make our dataset and trained models available on https://gitlab.lrz.de/ai4eo/reasoning/multiscene.