Do you want to publish a course? Click here

A Hubble PanCET Study of HAT-P-11b: A Cloudy Neptune with a Low Atmospheric Metallicity

145   0   0.0 ( 0 )
 Added by Yayaati Chachan
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first comprehensive look at the $0.35-5$ $mu$m transmission spectrum of the warm ($sim 800$ K) Neptune HAT-P-11b derived from thirteen individual transits observed using the Hubble and Spitzer Space Telescopes. Along with the previously published molecular absorption feature in the $1.1-1.7$ $mu$m bandpass, we detect a distinct absorption feature at 1.15 $mu$m and a weak feature at 0.95 $mu$m, indicating the presence of water and/or methane with a combined significance of 4.4 $sigma$. We find that this planets nearly flat optical transmission spectrum and attenuated near-infrared molecular absorption features are best-matched by models incorporating a high-altitude cloud layer. Atmospheric retrievals using the combined $0.35-1.7$ $mu$m HST transmission spectrum yield strong constraints on atmospheric cloud-top pressure and metallicity, but we are unable to match the relatively shallow Spitzer transit depths without under-predicting the strength of the near-infrared molecular absorption bands. HAT-P-11bs HST transmission spectrum is well-matched by predictions from our microphysical cloud models. Both forward models and retrievals indicate that HAT-P-11b most likely has a relatively low atmospheric metallicity ($<4.6 ; Z_{odot}$ and $<86 ; Z_{odot}$ at the $2 sigma$ and $3 sigma$ levels respectively), in contrast to the expected trend based on the solar system planets. Our work also demonstrates that the wide wavelength coverage provided by the addition of the HST STIS data is critical for making these inferences.



rate research

Read More

121 - G. A. Bakos 2009
We report on the discovery of HAT-P-11b, the smallest radius transiting extrasolar planet (TEP) discovered from the ground, and the first hot Neptune discovered to date by transit searches. HAT-P-11b orbits the bright (V=9.587) and metal rich ([Fe=H] = +0.31 +/- 0.05) K4 dwarf star GSC 03561-02092 with P = 4.8878162 +/- 0.0000071 days and produces a transit signal with depth of 4.2 mmag. We present a global analysis of the available photometric and radial-velocity data that result in stellar and planetary parameters, with simultaneous treatment of systematic variations. The planet, like its near-twin GJ 436b, is somewhat larger than Neptune (17Mearth, 3.8Rearth) both in mass Mp = 0.081 +/- 0.009 MJ (25.8 +/- 2.9 Mearth) and radius Rp = 0.422 +/- 0.014 RJ (4.73 +/- 0.16 Rearth). HAT-P-11b orbits in an eccentric orbit with e = 0.198 +/- 0.046 and omega = 355.2 +/- 17.3, causing a reflex motion of its parent star with amplitude 11.6 +/- 1.2 m/s, a challenging detection due to the high level of chromospheric activity of the parent star. Our ephemeris for the transit events is Tc = 2454605.89132 +/- 0.00032 (BJD), with duration 0.0957 +/- 0.0012 d, and secondary eclipse epoch of 2454608.96 +/- 0.15 d (BJD). The basic stellar parameters of the host star are M* = 0.809+0.020-0.027 Msun, R* = 0.752 +/- 0.021 Rsun and Teff = 4780 +/- 50 K. Importantly, HAT-P-11 will lie on one of the detectors of the forthcoming Kepler mission. We discuss an interesting constraint on the eccentricity of the system by the transit light curve and stellar parameters. We also present a blend analysis, that for the first time treats the case of a blended transiting hot Jupiter mimicing a transiting hot Neptune, and proves that HAT-P-11b is not such a blend.
We report the discovery of HAT-P-26b, a transiting extrasolar planet orbiting the moderately bright V=11.744 K1 dwarf star GSC 0320-01027, with a period P = 4.234516 +- 0.000015 d, transit epoch Tc = 2455304.65122 +- 0.00035 (BJD), and transit duration 0.1023 +- 0.0010 d. The host star has a mass of 0.82 +- 0.03 Msun, radius of 0.79 + 0.10 - 0.04 Rsun, effective temperature 5079 +- 88 K, and metallicity [Fe/H] = -0.04 +- 0.08. The planetary companion has a mass of 0.059 +- 0.007 MJ, and radius of 0.565 + 0.072 - 0.032 RJ yielding a mean density of 0.40 +- 0.10 g cm-3. HAT-P-26b is the fourth Neptune-mass transiting planet discovered to date. It has a mass that is comparable to those of Neptune and Uranus, and slightly smaller than those of the other transiting Super-Neptunes, but a radius that is ~65% larger than those of Neptune and Uranus, and also larger than those of the other transiting Super-Neptunes. HAT-P-26b is consistent with theoretical models of an irradiated Neptune-mass planet with a 10 Mearth heavy element core that comprises >~ 50% of its mass with the remainder contained in a significant hydrogen-helium envelope, though the exact composition is uncertain as there are significant differences between various theoretical models at the Neptune-mass regime. The equatorial declination of the star makes it easily accessible to both Northern and Southern ground-based facilities for follow-up observations.
We present a comprehensive analysis of the 0.3--5,$mu$m transit spectrum for the inflated hot Jupiter HAT-P-41b. The planet was observed in transit with Hubble STIS and WFC3 as part of the Hubble Panchromatic Comparative Exoplanet Treasury (PanCET) program, and we combine those data with warm textit{Spitzer} transit observations. We extract transit depths from each of the data sets, presenting the STIS transit spectrum (0.29--0.93,$mu$m) for the first time. We retrieve the transit spectrum both with a free-chemistry retrieval suite (AURA) and a complementary chemical equilibrium retrieval suite (PLATON) to constrain the atmospheric properties at the day-night terminator. Both methods provide an excellent fit to the observed spectrum. Both AURA and PLATON retrieve a metal-rich atmosphere for almost all model assumptions (most likely O/H ratio of $log_{10}{Z/Z_{odot}} = 1.46^{+0.53}_{-0.68}$ and $log_{10}{Z/Z_{odot}} = 2.33^{+0.23}_{-0.25}$, respectively); this is driven by a 4.9-$sigma$ detection of H$_2$O as well as evidence of gas absorption in the optical ($>$2.7-$sigma$ detection) due to Na, AlO and/or VO/TiO, though no individual species is strongly detected. Both retrievals determine the transit spectrum to be consistent with a clear atmosphere, with no evidence of haze or high-altitude clouds. Interior modeling constraints on the maximum atmospheric metallicity ($log_{10}{Z/Z_{odot}} < 1.7$) favor the AURA results. The inferred elemental oxygen abundance suggests that HAT-P-41b has one of the most metal-rich atmospheres of any hot Jupiters known to date. Overall, the inferred high metallicity and high inflation make HAT-P-41b an interesting test case for planet formation theories.
A correlation between giant-planet mass and atmospheric heavy elemental abundance was first noted in the past century from observations of planets in our own Solar System, and has served as a cornerstone of planet formation theory. Using data from the Hubble and Spitzer Space Telescopes from 0.5 to 5 microns, we conducted a detailed atmospheric study of the transiting Neptune-mass exoplanet HAT-P-26b. We detected prominent H2O absorption bands with a maximum base-to-peak amplitude of 525ppm in the transmission spectrum. Using the water abundance as a proxy for metallicity, we measured HAT-P-26bs atmospheric heavy element content [4.8 (-4.0 +21.5) times solar]. This likely indicates that HAT-P-26bs atmosphere is primordial and obtained its gaseous envelope late in its disk lifetime, with little contamination from metal-rich planetesimals.
We present a thermal emission spectrum of the bloated hot Jupiter HAT-P-32Ab from a single eclipse observation made in spatial scan mode with the Wide Field Camera 3 (WFC3) aboard the Hubble Space Telescope (HST). The spectrum covers the wavelength regime from 1.123 to 1.644 microns which is binned into 14 eclipse depths measured to an averaged precision of 104 parts-per million. The spectrum is unaffected by a dilution from the close M-dwarf companion HAT-P-32B, which was fully resolved. We complemented our spectrum with literature results and performed a comparative forward and retrieval analysis with the 1D radiative-convective ATMO model. Assuming solar abundance of the planet atmosphere, we find that the measured spectrum can best be explained by the spectrum of a blackbody isothermal atmosphere with Tp = 1995 +/- 17K, but can equally-well be described by a spectrum with modest thermal inversion. The retrieved spectrum suggests emission from VO at the WFC3 wavelengths and no evidence of the 1.4 micron water feature. The emission models with temperature profiles decreasing with height are rejected at a high confidence. An isothermal or inverted spectrum can imply a clear atmosphere with an absorber, a dusty cloud deck or a combination of both. We find that the planet can have continuum of values for the albedo and recirculation, ranging from high albedo and poor recirculation to low albedo and efficient recirculation. Optical spectroscopy of the planets day-side or thermal emission phase curves can potentially resolve the current albedo with recirculation degeneracy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا