Do you want to publish a course? Click here

HAT-P-11b: A Super-Neptune Planet Transiting a Bright K Star in the Kepler Field

130   0   0.0 ( 0 )
 Added by Gaspar Bakos A
 Publication date 2009
  fields Physics
and research's language is English
 Authors G. A. Bakos




Ask ChatGPT about the research

We report on the discovery of HAT-P-11b, the smallest radius transiting extrasolar planet (TEP) discovered from the ground, and the first hot Neptune discovered to date by transit searches. HAT-P-11b orbits the bright (V=9.587) and metal rich ([Fe=H] = +0.31 +/- 0.05) K4 dwarf star GSC 03561-02092 with P = 4.8878162 +/- 0.0000071 days and produces a transit signal with depth of 4.2 mmag. We present a global analysis of the available photometric and radial-velocity data that result in stellar and planetary parameters, with simultaneous treatment of systematic variations. The planet, like its near-twin GJ 436b, is somewhat larger than Neptune (17Mearth, 3.8Rearth) both in mass Mp = 0.081 +/- 0.009 MJ (25.8 +/- 2.9 Mearth) and radius Rp = 0.422 +/- 0.014 RJ (4.73 +/- 0.16 Rearth). HAT-P-11b orbits in an eccentric orbit with e = 0.198 +/- 0.046 and omega = 355.2 +/- 17.3, causing a reflex motion of its parent star with amplitude 11.6 +/- 1.2 m/s, a challenging detection due to the high level of chromospheric activity of the parent star. Our ephemeris for the transit events is Tc = 2454605.89132 +/- 0.00032 (BJD), with duration 0.0957 +/- 0.0012 d, and secondary eclipse epoch of 2454608.96 +/- 0.15 d (BJD). The basic stellar parameters of the host star are M* = 0.809+0.020-0.027 Msun, R* = 0.752 +/- 0.021 Rsun and Teff = 4780 +/- 50 K. Importantly, HAT-P-11 will lie on one of the detectors of the forthcoming Kepler mission. We discuss an interesting constraint on the eccentricity of the system by the transit light curve and stellar parameters. We also present a blend analysis, that for the first time treats the case of a blended transiting hot Jupiter mimicing a transiting hot Neptune, and proves that HAT-P-11b is not such a blend.



rate research

Read More

We report the discovery of HAT-P-26b, a transiting extrasolar planet orbiting the moderately bright V=11.744 K1 dwarf star GSC 0320-01027, with a period P = 4.234516 +- 0.000015 d, transit epoch Tc = 2455304.65122 +- 0.00035 (BJD), and transit duration 0.1023 +- 0.0010 d. The host star has a mass of 0.82 +- 0.03 Msun, radius of 0.79 + 0.10 - 0.04 Rsun, effective temperature 5079 +- 88 K, and metallicity [Fe/H] = -0.04 +- 0.08. The planetary companion has a mass of 0.059 +- 0.007 MJ, and radius of 0.565 + 0.072 - 0.032 RJ yielding a mean density of 0.40 +- 0.10 g cm-3. HAT-P-26b is the fourth Neptune-mass transiting planet discovered to date. It has a mass that is comparable to those of Neptune and Uranus, and slightly smaller than those of the other transiting Super-Neptunes, but a radius that is ~65% larger than those of Neptune and Uranus, and also larger than those of the other transiting Super-Neptunes. HAT-P-26b is consistent with theoretical models of an irradiated Neptune-mass planet with a 10 Mearth heavy element core that comprises >~ 50% of its mass with the remainder contained in a significant hydrogen-helium envelope, though the exact composition is uncertain as there are significant differences between various theoretical models at the Neptune-mass regime. The equatorial declination of the star makes it easily accessible to both Northern and Southern ground-based facilities for follow-up observations.
169 - A. Pal , G. A. Bakos (1 2008
We report on the latest discovery of the HATNet project; a very hot giant planet orbiting a bright (V = 10.5) star with a small semi-major axis of a = 0.0377 +/- 0.0005 AU. Ephemeris for the system is P = 2.2047299 +/- 0.0000040 days, mid-transit time E = 2,453,790.2593 +/- 0.0010 (BJD). Based on the available spectroscopic data on the host star and photometry of the system, the planet has a mass of Mp = 1.78+/-^{0.08}_{0.05} MJup and radius of Rp = 1.36+/-^{0.20}_{0.09} RJup. The parent star is a slightly evolved F6 star with M = 1.47+/-^{0.08}_{-0.05} Msun,R = 1.84+/-^{0.23}_{0.11} Rsun, Teff = 6350 +/- 80 K, and metallicity [Fe/H] = +0.26 +/- 0.08. The relatively hot and large host star, combined with the close orbit of the planet, yield a very high planetary irradiance of (4.71+/-^{1.44}_{0.05}) 10^9 erg cm^{-2}s^{-1}, which places the planet near the top of the pM class of irradiated planets as defined by Fortney et al. (2007). If as predicted by Fortney et al. (2007) the planet re-radiates its absorbed energy before distributing it to the night side, the day-side temperature should be about (2730+/-^{150}_{100}) K. Because the host star is quite bright, measurement of the secondary eclipse should be feasible for ground-based telescopes, providing a good opportunity to compare the predictions of current hot Jupiter atmospheric models with the observations. Moreover, the host star falls in the field of the upcoming Kepler mission; hence extensive space-borne follow-up, including not only primary transit and secondary eclipse observations but also asteroseismology, will be possible.
We report the discovery of the transiting extrasolar planet HAT-P-49b. The planet transits the bright (V = 10.3) slightly evolved F-star HD 340099 with a mass of 1.54M_S and a radius of 1.83 R_S. HAT-P-49b is orbiting one of the 25 brightest stars to host a transiting planet which makes this a favorable candidate for detailed follow-up. This system is an especially strong target for Rossiter- McLaughlin follow-up due to the fast rotation of the host star, 16 km/s. The planetary companion has a period of 2.6915 d, mass of 1.73 M_J and radius of 1.41 R_J. The planetary characteristics are consistent with that of a classical hot Jupiter but we note that this is the fourth most massive star to host a transiting planet with both M_p and R_p well determined.
We report the discovery of HAT-P-16b, a transiting extrasolar planet orbiting the V = 10.8 mag F8 dwarf GSC 2792-01700, with a period P = 2.775960 +- 0.000003 d, transit epoch Tc = 2455027.59293 +- 0.00031 (BJD), and transit duration 0.1276 +- 0.0013 d. The host star has a mass of 1.22 +- 0.04 Msun, radius of 1.24 +- 0.05 Rsun, effective temperature 6158 +-80 K, and metallicity [Fe/H] = +0.17 +- 0.08. The planetary companion has a mass of 4.193 +- 0.094 MJ, and radius of 1.289 +- 0.066 RJ yielding a mean density of 2.42 +- 0.35 g/cm3. Comparing these observed characteristics with recent theoretical models, we find that HAT-P-16b is consistent with a 1 Gyr H/He-dominated gas giant planet. HAT-P-16b resides in a sparsely populated region of the mass{radius diagram and has a non-zero eccentricity of e = 0.036 with a significance of 10 sigma.
We report the discovery of HAT-P-38b, a Saturn-mass exoplanet transiting the V=12.56 dwarf star GSC 2314-00559 on a P = 4.6404 d circular orbit. The host star is a 0.89Msun late G-dwarf, with solar metallicity, and a radius of 0.92Rsun. The planetary companion has a mass of 0.27MJ, and radius of 0.82RJ. HAT-P-38b is one of the closest planets in mass and radius to Saturn ever discovered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا