Do you want to publish a course? Click here

A quantum memory at telecom wavelengths

133   0   0.0 ( 0 )
 Added by Andreas Wallucks
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanofabricated mechanical resonators are gaining significant momentum among potential quantum technologies due to their unique design freedom and independence from naturally occurring resonances. With their functionality being widely detached from material choice, they constitute ideal tools to be used as transducers, i.e. intermediaries between different quantum systems, and as memory elements in conjunction with quantum communication and computing devices. Their capability to host ultra-long lived phonon modes is particularity attractive for non-classical information storage, both for future quantum technologies as well as for fundamental tests of physics. Here we demonstrate such a mechanical quantum memory with an energy decay time of $T_1approx2$ ms, which is controlled through an optical interface engineered to natively operate at telecom wavelengths. We further investigate the coherence of the memory, equivalent to the dephasing $T_2^*$ for qubits, which exhibits a power dependent value between 15 and 112 $mu$s. This demonstration is enabled by a novel optical scheme to create a superposition state of $rvert{0}rangle+rvert{1}rangle$ mechanical excitations, with an arbitrary ratio between the vacuum and single phonon components.



rate research

Read More

We characterize a periodically poled KTP crystal that produces an entangled, two-mode, squeezed state with orthogonal polarizations, nearly identical, factorizable frequency modes, and few photons in unwanted frequency modes. We focus the pump beam to create a nearly circular joint spectral probability distribution between the two modes. After disentangling the two modes, we observe Hong-Ou-Mandel interference with a raw (background corrected) visibility of 86 % (95 %) when an 8.6 nm bandwidth spectral filter is applied. We measure second order photon correlations of the entangled and disentangled squeezed states with both superconducting nanowire single-photon detectors and photon-number-resolving transition-edge sensors. Both methods agree and verify that the detected modes contain the desired photon number distributions.
Integrated optical components on lithium niobate play a major role in standard high-speed communication systems. Over the last two decades, after the birth and positioning of quantum information science, lithium niobate waveguide architectures have emerged as one of the key platforms for enabling photonics quantum technologies. Due to mature technological processes for waveguide structure integration, as well as inherent and efficient properties for nonlinear optical effects, lithium niobate devices are nowadays at the heart of many photon-pair or triplet sources, single-photon detectors, coherent wavelength-conversion interfaces, and quantum memories. Consequently, they find applications in advanced and complex quantum communication systems, where compactness, stability, efficiency, and interconnectability with other guided-wave technologies are required. In this review paper, we first introduce the material aspects of lithium niobate, and subsequently discuss all of the above mentioned quantum components, ranging from standard photon-pair sources to more complex and advanced circuits.
Deterministic solid-state quantum light sources are key building blocks in photonic quantum technologies. While several proof-of-principle experiments of quantum communication using such sources have been realized, all of them required bulky setups. Here, we evaluate for the first time the performance of a compact and stand-alone fiber-coupled single-photon source emitting in the telecom O-band ($1321,$nm) for its application in quantum key distribution (QKD). For this purpose, we developed a compact 19 rack module including a deterministically fiber-coupled quantum dot single-photon source integrated into a Stirling cryocooler, a pulsed diode laser for driving the quantum dot, and a fiber-based spectral filter. We further employed this compact quantum light source in a QKD testbed designed for polarization coding via the BB84 protocol resulting in $g^{(2)}(0) = 0.10pm0.01$ and a raw key rate of up to $(4.72pm0.13),$kHz using an external laser for excitation. In this setting we investigate the achievable performance expected in full implementations of QKD. Using 2D temporal filtering on receiver side, we evaluate optimal parameter settings for different QKD transmission scenarios taking also finite key size effects into account. Using optimized parameter sets for the temporal acceptance time window, we predict a maximal tolerable loss of $23.19,$dB. Finally, we compare our results to previous QKD systems using quantum dot single-photon sources. Our study represents an important step forward in the development of fiber-based quantum-secured communication networks exploiting sub-Poissonian quantum light sources.
Quantum frequency conversion (QFC), a nonlinear optical process in which the frequency of a quantum light field is altered while conserving its non-classical correlations, was first demonstrated 20 years ago. Meanwhile, it is considered an essential tool for the implementation of quantum repeaters since it allows for interfacing quantum memories with telecom-wavelength photons as quantum information carriers. Here we demonstrate efficient (>30%) QFC of visible single photons (711 nm) emitted by a quantum dot (QD) to a telecom wavelength (1,313 nm). Analysis of the first and second-order coherence before and after wavelength conversion clearly proves that important properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with QFC as a promising technique for quantum repeater schemes.
The successful employment of high-dimensional quantum correlations and its integration in telecommunication infrastructures is vital in cutting-edge quantum technologies for increasing robustness and key generation rate. Position-momentum Einstein-Podolsky-Rosen (EPR) entanglement of photon pairs are a promising resource of such high-dimensional quantum correlations. Here, we experimentally certify EPR correlations of photon pairs generated by spontaneous parametric down-conversion (SPDC) in a nonlinear crystal with type-0 phase-matching at telecom wavelength for the first time. To experimentally observe EPR entanglement, we perform scanning measurements in the near- and far-field planes of the signal and idler modes. We certify EPR correlations with high statistical significance of up to 45 standard deviations. Furthermore, we determine the entanglement of formation of our source to be greater than one, which gives evidence for the the high-dimensional entanglement between the photons. Operating at telecom wavelengths around 1550 nm, our source is compatible with todays deployed telecommunication infrastructure, thus paving the way for integrating sources of high-dimensional entanglement into quantum-communication infrastructures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا