Do you want to publish a course? Click here

Bose-like few-fermion systems

94   0   0.0 ( 0 )
 Added by Wu-Sheng Dai
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dealing with a few-fermion system in the canonical ensemble, rather than in the grand canonical ensemble, shows that a few-fermion system with odd number fermions behaves differently from a few-fermion system with even number fermions. An even-number-fermion system behaves like a Bose system rather than a Fermi system.



rate research

Read More

63 - G. Guijarro 2020
In this Thesis, we report a detailed study of the ground-state properties of a set of quantum few- and many-body systems in one and two dimensions with different types of interactions by using Quantum Monte Carlo methods. Nevertheless, the main focus of this work is the study of the ground-state properties of an ultracold Bose system with dipole-dipole interaction between the particles. We consider the cases where the bosons are confined to a bilayer and multilayer geometries, that consist of equally spaced two-dimensional layers. These layers can be experimentally realized by imposing tight confinement in one direction. We specifically address the study of new quantum phases, their properties, and transitions between them. One expects these systems to have a rich collection of few- and many-body phases because the dipole-dipole interaction is anisotropic and quasi long-range.
We use Quantum Monte Carlo (QMC) simulations to study the pairing mechanism in a one-dimensional fermionic system governed by the Hubbard model with attractive contact interaction and with imbalance between the two spin populations. This is done for the uniform system and also for the system confined in a harmonic trap to compare with experiments on confined ultra-cold atoms. In the uniform case we determine the phase diagram in the polarization-temperature plane and find that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase is robust and persists to higher temperature for higher polarization. In the confined case, we also find that the FFLO phase is stabilized by higher polarization and that it is within the range of detection of experiments currently underway.
We investigate a small vortex-lattice system of four co-rotating vortices in an atomic Bose--Einstein condensate and find that the vortex dynamics display chaotic behaviour after a system quench introduced by reversing the direction of circulation of a single vortex through a phase-imprinting process. By tracking the vortex trajectories and Lyapunov exponent, we show the onset of chaotic dynamics is not immediate, but occurs at later times and is accelerated by the close-approach and separation of all vortices in a scattering event. The techniques we develop could potentially be applied to create locally induced chaotic dynamics in larger lattice systems as a stepping stone to study the role of chaotic events in turbulent vortex dynamics.
71 - Boris Krippa 2015
The Functional Renormalisation Group approach is applied the imbalanced many-fermion systems. The system is found to exhibit the first order phase transition from the superfluid to normal phase when the density (chemical potential) mismatch becomes larger then some critical values. The perspectives of using fermionic cold atoms to study nuclear/quark matter is briefly discussed.
Few-body correlations emerging in two-dimensional harmonically trapped mixtures, are comprehensively investigated. The presence of the trap leads to the formation of atom-dimer and trap states, in addition to trimers. The Tans contacts of these eigenstates are studied for varying interspecies scattering lengths and mass ratio, while corresponding analytical insights are provided within the adiabatic hyperspherical formalism. The two- and three-body correlations of trimer states are substantially enhanced compared to the other eigenstates. The two-body contact of the atom-dimer and trap states features an upper bound regardless of the statistics, treated semi-classically and having an analytical prediction in the limit of large scattering lengths. Such an upper bound is absent in the three-body contact. Interestingly, by tuning the interspecies scattering length the contacts oscillate as the atom-dimer and trap states change character through the existent avoided-crossings in the energy spectra. For thermal gases, a gradual suppression of the involved two- and three-body correlations is evinced manifesting the impact of thermal effects. Moreover, spatial configurations of the distinct eigenstates ranging from localized structures to angular anisotropic patterns are captured. Our results provide valuable insights into the inherent correlation mechanisms of few-body mixtures which can be implemented in recent ultracold atom experiments and will be especially useful for probing the crossover from few- to many-atom systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا