We use Quantum Monte Carlo (QMC) simulations to study the pairing mechanism in a one-dimensional fermionic system governed by the Hubbard model with attractive contact interaction and with imbalance between the two spin populations. This is done for the uniform system and also for the system confined in a harmonic trap to compare with experiments on confined ultra-cold atoms. In the uniform case we determine the phase diagram in the polarization-temperature plane and find that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase is robust and persists to higher temperature for higher polarization. In the confined case, we also find that the FFLO phase is stabilized by higher polarization and that it is within the range of detection of experiments currently underway.
The Functional Renormalisation Group approach is applied the imbalanced many-fermion systems. The system is found to exhibit the first order phase transition from the superfluid to normal phase when the density (chemical potential) mismatch becomes larger then some critical values. The perspectives of using fermionic cold atoms to study nuclear/quark matter is briefly discussed.
Functional renormalisation group approach is applied to a imbalanced many- fermion system with a short-range attractive force. Composite boson field is introduced to describe the pairing between different flavour fermions. A set of approximate flow equations for the effective couplings is derived and solved. We identify the critical values of mass and particle number density mismatch when the system undergoes a phase transition to a normal state and determine the phase diagram both at unitary regime and nearby.
We study the attractive Hubbard model with spin imbalance on two lattices featuring a flat band: the Lieb and kagome lattices. We present mean-field phase diagrams featuring exotic superfluid phases, similar to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, whose stability is confirmed by dynamical mean-field theory (DMFT). The nature of the pairing is found to be richer than just the Fermi surface shift responsible for the usual FFLO state. The presence of a flat band allows for changes in the particle momentum distributions at null energy cost. This facilitates formation of nontrivial superfluid phases via multiband Cooper pair formation: the momentum distribution of the spin component in the flat band deforms to mimic the Fermi surface of the other spin component residing in a dispersive band. The Fermi surface of the unpaired particles that are typical for gapless superfluids becomes deformed as well. The results highlight the profound effect of flat dispersions on Fermi surface instabilities, and provide a potential route for observing spin-imbalanced superfluidity and superconductivity.
We investigate the quantum phases of mixed-dimensional cold atom mixtures. In particular, we consider a mixture of a Fermi gas in a two-dimensional lattice, interacting with a bulk Fermi gas or a Bose-Einstein condensate in a three-dimensional lattice. The effective interaction of the two-dimensional system mediated by the bulk system is determined. We perform a functional renormalization group analysis, and demonstrate that by tuning the properties of the bulk system, a subtle competition of several superconducting orders can be controlled among $s$-wave, $p$-wave, $d_{x^2-y^2}$-wave, and $g_{xy(x^2-y^2)}$-wave pairing symmetries. Other instabilities such as a charge-density wave order are also demonstrated to occur. In particular, we find that the critical temperature of the $d$-wave pairing induced by the next-nearest-neighbor interactions can be an order of magnitude larger than that of the same pairing induced by doping in the simple Hubbard model. We expect that by combining the nearest-neighbor interaction with the next-nearest-neighbor hopping (known to enhance $d$-wave pairing), an even higher critical temperature may be achieved.
We study spin- and mass-imbalanced mixtures of spin-$tfrac{1}{2}$ fermions interacting via an attractive contact potential in one spatial dimension. Specifically, we address the influence of unequal particle masses on the pair formation by means of the complex Langevin method. By computing the pair-correlation function and the associated pair-momentum distribution we find that inhomogeneous pairing is present for all studied spin polarizations and mass imbalances. To further characterize the pairing behavior, we analyze the density-density correlations in momentum space, the so-called shot noise, which is experimentally accessible through time-of-flight imaging. At finite spin polarization, the latter is known to show distinct maxima at momentum configurations associated with the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) instability. Besides those maxima, we find that additional features emerge in the noise correlations when mass imbalance is increased, revealing the stability of FFLO-type correlations against mass imbalance and furnishing an experimentally accessible signature to probe this type of pairing.