No Arabic abstract
We investigated the chemical evolution of HC3N in six dense molecular clouds, using archival available data from the Herschel infrared Galactic Plane Survey (Hi-GAL) and the Millimeter Astronomy Legacy Team Survey at 90 GHz (MALT90). Radio sky surveys of the Multi-Array Galactic Plane Imaging Survey (MAGPIS) and the Sydney University Molonglo Sky Survey (SUMSS) indicate these dense molecular clouds are associated with ultracompact HII (UCHII) regions and/or classical HII regions. We find that in dense molecular clouds associated with normal classical HII regions, the abundance of HC3N begins to decrease or reaches a plateau when the dust temperature gets hot. This implies UV photons could destroy the molecule of HC3N. On the other hand, in the other dense molecular clouds associated with UCHII regions, we find the abundance of HC3N increases with dust temperature monotonously, implying HC3N prefers to be formed in warm gas. We also find that the spectra of HC3N (10-9) in G12.804-0.199 and RCW 97 show wing emissions, and the abundance of HC3N in these two regions increases with its nonthermal velocity width, indicating HC3N might be a shock origin species. We further investigated the evolutionary trend of N(N2H+)/N(HC3N) column density ratio, and found this ratio could be used as a chemical evolutionary indicator of cloud evolution after the massive star formation is started.
Molecular clouds are essentially made up of atomic and molecular hydrogen, which in spite of being the simplest molecule in the ISM plays a key role in the chemical evolution of molecular clouds. Since its formation time is very long, the H2 molecules can be transported by the turbulent motions within the cloud toward low density and warm regions, where its enhanced abundance can boost the abundances of molecules with high endothermicities. We present high resolution simulations where we include the evolution of the molecular gas under the effect of the dynamics, and we analyze its impact on the abundance of CH+.
We have developed the first gas-grain chemical model for oxygen fractionation (also including sulphur fractionation) in dense molecular clouds, demonstrating that gas-phase chemistry generates variable oxygen fractionation levels, with a particularly strong effect for NO, SO, O2, and SO2. This large effect is due to the efficiency of the neutral 18O + NO, 18O + SO, and 18O + O2 exchange reactions. The modeling results were compared to new and existing observed isotopic ratios in a selection of cold cores. The good agreement between model and observations requires that the gas-phase abundance of neutral oxygen atoms is large in the observed regions. The S16O/S18O ratio is predicted to vary substantially over time showing that it can be used as a sensitive chemical proxy for matter evolution in dense molecular clouds.
We have conducted OH 18 cm survey toward 141 molecular clouds in various environments, including 33 optical dark clouds, 98 Planck Galactic cold clumps (PGCCs) and 10 Spitzer dark clouds with the Arecibo telescope. The deviations from local thermal equilibrium are common for intensity ratios of both OH main lines and satellite lines. Line intensity of OH 1667 MHz is found to correlate linearly with visual extinction $Arm_V$ when $Arm_V$ is less than 3 mag. It was converted into OH column density by adopting excitation temperature derived from Monte Carlo simulations with one sigma uncertainty. The relationship between OH abundance $X$(OH) relative to H$_2$ and $Arm_V$ is found to follow an empirical formula, begin{equation} onumber frac{X(textrm{OH})}{10^{-7}} = 1.3^{+0.4}_{-0.4} + 6.3^{+0.5}_{-0.5}times textrm{exp}(-frac{A_textrm{V}}{2.9^{+0.6}_{-0.6}}). end{equation} Linear correlation is found between OH and $^{13}$CO intensity. Besides, nonthermal velocity dispersions of OH and $^{13}$CO are closely correlated. These results imply tight chemical evolution and spatial occupation between OH and $^{13}$CO. No obvious correlation is found between column density and nonthermal velocity dispersion of OH and HI Narrow Self-Absorption (HINSA), indicating different chemical evolution and spatial volume occupation between OH and HINSA. Using the age information of HINSA analysis, OH abundance $X$(OH) is found to increase linearly with cloud age, which is consistent with previous simulations. Fourteen OH components without corresponding CO emission were detected, implying the effectiveness of OH in tracing the `CO-dark molecular gas.
The ketenyl radical (HCCO) has recently been discovered in two cold dense clouds with a non-negligible abundance of a few 1e-11 (compared to H2) (Agundez et al. 2015). Until now, no chemical network has been able to reproduce this observation. We propose here a chemical scheme that can reproduce HCCO abundances together with HCO, H2CCO and CH3CHO in the dark clouds Lupus-1A and L486. The main formation pathway for HCCO is the OH + CCH -> HCCO + H reaction as suggested by Agundez et al. (2015) but with a much larger rate coefficient than used in current models. Since this reaction has never been studied experimentally or theoretically, this larger value is based on a comparison with other similar systems.
The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold dense molecular cloud, to investigate two so far neglected mechanisms of dust charging: collection of suprathermal CR electrons and protons by grains, and photoelectric emission from grains due to the UV radiation generated by CRs. The two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: While the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities $n(mathrm{H_2})$ between $sim10^4$ cm$^{-3}$ and $sim10^6$ cm$^{-3}$. The charging effect of CR is of generic nature, and therefore is expected to operate not only in dense molecular clouds but also in the upper layers and the outer parts of protoplanetary discs.