Do you want to publish a course? Click here

Quantum Hall criticality in Floquet topological insulators

71   0   0.0 ( 0 )
 Added by Dmitry A. Bagrets
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The anomalous Floquet Anderson insulator (AFAI) is a two dimensional periodically driven system in which static disorder stabilizes two topologically distinct phases in the thermodynamic limit. The presence of a unit-conducting chiral edge mode and the essential role of disorder induced localization are reminiscent of the integer quantum Hall (IQH) effect. At the same time, chirality in the AFAI is introduced via an orchestrated driving protocol, there is no magnetic field, no energy conservation, and no (Landau level) band structure. In this paper we show that in spite of these differences the AFAI topological phase transition is in the IQH universality class. We do so by mapping the system onto an effective theory describing phase coherent transport in the system at large length scales. Unlike with other disordered systems, the form of this theory is almost fully determined by symmetry and topological consistency criteria, and can even be guessed without calculation. (However, we back this expectation by a first principle derivation.) Its equivalence to the Pruisken theory of the IQH demonstrates the above equivalence. At the same time it makes predictions on the emergent quantization of transport coefficients, and the delocalization of bulk states at quantum criticality which we test against numerical simulations.



rate research

Read More

We study quantum noise in a nonequilibrium, periodically driven, open system attached to static leads. Using a Floquet Greens function formalism we show, both analytically and numerically, that local voltage noise spectra can detect the rich structure of Floquet topological phases unambiguously. Remarkably, both regular and anomalous Floquet topological bound states can be detected, and distinguished, via peak structures of noise spectra at the edge around zero-, half-, and full-drive-frequency. We also show that the topological features of local noise are robust against moderate disorder. Thus, local noise measurements are sensitive detectors of Floquet topological phases.
Network models for equilibrium integer quantum Hall (IQH) transitions are described by unitary scattering matrices, that can also be viewed as representing non-equilibrium Floquet systems. The resulting Floquet bands have zero Chern number, and are instead characterized by a chiral Floquet (CF) winding number. This begs the question: How can a model without Chern number describe IQH systems? We resolve this apparent paradox by showing that non-zero Chern number is recovered from the network model via the energy dependence of network model scattering parameters. This relationship shows that, despite their topologically distinct origins, IQH and CF topology-changing transitions share identical universal scaling properties.
Our understanding of topological insulators is based on an underlying crystalline lattice where the local electronic degrees of freedom at different sites hybridize with each other in ways that produce nontrivial band topology, and the search for material systems to realize such phases have been strongly influenced by this. Here we theoretically demonstrate topological insulators in systems with a random distribution of sites in space, i. e., a random lattice. This is achieved by constructing hopping models on random lattices whose ground states possess nontrivial topological nature (characterized e. g., by Bott indices) that manifests as quantized conductances in systems with a boundary. By tuning parameters such as the density of sites (for a given range of fermion hopping), we can achieve transitions from trivial to topological phases. We discuss interesting features of these transitions. In two spatial dimensions, we show this for all five symmetry classes (A, AII, D, DIII and C) that are known to host nontrivial topology in crystalline systems. We expect similar physics to be realizable in any dimension and provide an explicit example of a $Z_2$ topological insulator on a random lattice in three spatial dimensions. Our study not only provides a deeper understanding of the topological phases of non-interacting fermions, but also suggests new directions in the pursuit of the laboratory realization of topological quantum matter.
Periodically driven systems can host so called anomalous topological phases, in which protected boundary states coexist with topologically trivial Floquet bulk bands. We introduce an anomalous version of reflection symmetry protected topological crystalline insulators, obtained as a stack of weakly-coupled two-dimensional layers. The system has tunable and robust surface Dirac cones even though the mirror Chern numbers of the Floquet bulk bands vanish. The number of surface Dirac cones is given by a new topological invariant determined from the scattering matrix of the system. Further, we find that due to particle-hole symmetry, the positions of Dirac cones in the surface Brillouin zone are controlled by an additional invariant, counting the parity of modes present at high symmetry points.
104 - Yan-Bin Yang , Kai Li , L.-M. Duan 2020
We study disorder effects in a two-dimensional system with chiral symmetry and find that disorder can induce a quadrupole topological insulating phase (a higher-order topological phase with quadrupole moments) from a topologically trivial phase. Their topological properties manifest in a topological invariant defined based on effective boundary Hamiltonians, the quadrupole moment, and zero-energy corner modes. We find gapped and gapless topological phases and a Griffiths regime. In the gapless topological phase, all the states are localized, while in the Griffiths regime, the states at zero energy become multifractal. We further apply the self-consistent Born approximation to show that the induced topological phase arises from disorder renormalized masses. We finally introduce a practical experimental scheme with topoelectrical circuits where the predicted topological phenomena can be observed by impedance measurements. Our work opens the door to studying higher-order topological Anderson insulators and their localization properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا