No Arabic abstract
We propose a two-sample testing procedure based on learned deep neural network representations. To this end, we define two test statistics that perform an asymptotic location test on data samples mapped onto a hidden layer. The tests are consistent and asymptotically control the type-1 error rate. Their test statistics can be evaluated in linear time (in the sample size). Suitable data representations are obtained in a data-driven way, by solving a supervised or unsupervised transfer-learning task on an auxiliary (potentially distinct) data set. If no auxiliary data is available, we split the data into two chunks: one for learning representations and one for computing the test statistic. In experiments on audio samples, natural images and three-dimensional neuroimaging data our tests yield significant decreases in type-2 error rate (up to 35 percentage points) compared to state-of-the-art two-sample tests such as kernel-methods and classifier two-sample tests.
We propose a class of kernel-based two-sample tests, which aim to determine whether two sets of samples are drawn from the same distribution. Our tests are constructed from kernels parameterized by deep neural nets, trained to maximize test power. These tests adapt to variations in distribution smoothness and shape over space, and are especially suited to high dimensions and complex data. By contrast, the simpler kernels used in prior kernel testing work are spatially homogeneous, and adaptive only in lengthscale. We explain how this scheme includes popular classifier-based two-sample tests as a special case, but improves on them in general. We provide the first proof of consistency for the proposed adaptation method, which applies both to kernels on deep features and to simpler radial basis kernels or multiple kernel learning. In experiments, we establish the superior performance of our deep kernels in hypothesis testing on benchmark and real-world data. The code of our deep-kernel-based two sample tests is available at https://github.com/fengliu90/DK-for-TST.
Modern kernel-based two-sample tests have shown great success in distinguishing complex, high-dimensional distributions with appropriate learned kernels. Previous work has demonstrated that this kernel learning procedure succeeds, assuming a considerable number of observed samples from each distribution. In realistic scenarios with very limited numbers of data samples, however, it can be challenging to identify a kernel powerful enough to distinguish complex distributions. We address this issue by introducing the problem of meta two-sample testing (M2ST), which aims to exploit (abundant) auxiliary data on related tasks to find an algorithm that can quickly identify a powerful test on new target tasks. We propose two specific algorithms for this task: a generic scheme which improves over baselines and amore tailored approach which performs even better. We provide both theoretical justification and empirical evidence that our proposed meta-testing schemes out-perform learning kernel-based tests directly from scarce observations, and identify when such schemes will be successful.
We present a methodology for integrating functional data into deep densely connected feed-forward neural networks. The model is defined for scalar responses with multiple functional and scalar covariates. A by-product of the method is a set of dynamic functional weights that can be visualized during the optimization process. This visualization leads to greater interpretability of the relationship between the covariates and the response relative to conventional neural networks. The model is shown to perform well in a number of contexts including prediction of new data and recovery of the true underlying functional weights; these results were confirmed through real applications and simulation studies. A forthcoming R package is developed on top of a popular deep learning library (Keras) allowing for general use of the approach.
We introduce a new framework for sample-efficient model evaluation that we call active testing. While approaches like active learning reduce the number of labels needed for model training, existing literature largely ignores the cost of labeling test data, typically unrealistically assuming large test sets for model evaluation. This creates a disconnect to real applications, where test labels are important and just as expensive, e.g. for optimizing hyperparameters. Active testing addresses this by carefully selecting the test points to label, ensuring model evaluation is sample-efficient. To this end, we derive theoretically-grounded and intuitive acquisition strategies that are specifically tailored to the goals of active testing, noting these are distinct to those of active learning. As actively selecting labels introduces a bias; we further show how to remove this bias while reducing the variance of the estimator at the same time. Active testing is easy to implement and can be applied to any supervised machine learning method. We demonstrate its effectiveness on models including WideResNets and Gaussian processes on datasets including Fashion-MNIST and CIFAR-100.
Complex data structures such as time series are increasingly present in modern data science problems. A fundamental question is whether two such time-series are statistically dependent. Many current approaches make parametric assumptions on the random processes, only detect linear association, require multiple tests, or forfeit power in high-dimensional, nonlinear settings. Estimating the distribution of any test statistic under the null is non-trivial, as the permutation test is invalid. This work juxtaposes distance correlation (Dcorr) and multiscale graph correlation (MGC) from independence testing literature and block permutation from time series analysis to address these challenges. The proposed nonparametric procedure is valid and consistent, building upon prior work by characterizing the geometry of the relationship, estimating the time lag at which dependence is maximized, avoiding the need for multiple testing, and exhibiting superior power in high-dimensional, low sample size, nonlinear settings. Neural connectivity is analyzed via fMRI data, revealing linear dependence of signals within the visual network and default mode network, and nonlinear relationships in other networks. This work uncovers a first-resort data analysis tool with open-source code available, directly impacting a wide range of scientific disciplines.