Do you want to publish a course? Click here

Simulation of sympathetic cooling an optically levitated magnetic nanoparticle via coupling to a cold atomic gas

93   0   0.0 ( 0 )
 Added by Troy Seberson
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A proposal for cooling the translational motion of optically levitated magnetic nanoparticles is presented. The theoretical cooling scheme involves the sympathetic cooling of a ferromagnetic YIG nanosphere with a spin-polarized atomic gas. Particle-atom cloud coupling is mediated through the magnetic dipole-dipole interaction. When the particle and atom oscillations are small compared to their separation, the interaction potential becomes dominantly linear which allows the particle to exchange energy with the $N$ atoms. While the atoms are continuously Doppler cooled, energy is able to be removed from the nanoparticles motion as it exchanges energy with the atoms. The rate at which energy is removed from the nanoparticles motion was studied for three species of atoms (Dy, Cr, Rb) by simulating the full $N+1$ equations of motion and was found to depend on system parameters with scalings that are consistent with a simplified model. The nanoparticles damping rate due to sympathetic cooling is competitive with and has the potential to exceed commonly employed cooling methods.

rate research

Read More

433 - M. Mudrich , S. Kraft , K. Singer 2001
We simultaneously trap ultracold lithium and cesium atoms in an optical dipole trap formed by the focus of a CO$_2$ laser and study the exchange of thermal energy between the gases. The cesium gas, which is optically cooled to $20 mu$K, efficiently decreases the temperature of the lithium gas through sympathetic cooling. The measured cross section for thermalizing $^{133}$Cs-$^7$Li collisions is $8 times 10^{-12}$ cm$^2$, for both species in their lowest hyperfine ground state. Besides thermalization, we observe evaporation of lithium purely through elastic cesium-lithium collisions (sympathetic evaporation).
We experimentally realize cavity cooling of all three translational degrees of motion of a levitated nanoparticle in vacuum. The particle is trapped by a cavity-independent optical tweezer and coherently scatters tweezer light into the blue detuned cavity mode. For vacuum pressures around $10^{-5},{rm mbar}$, minimal temperatures along the cavity axis in the mK regime are observed. Simultaneously, the center-of-mass (COM) motion along the other two spatial directions is cooled to minimal temperatures of a few hundred $rm mK$. Measuring temperatures and damping rates as the pressure is varied, we find that the cooling efficiencies depend on the particle position within the intracavity standing wave. This data and the behaviour of the COM temperatures as functions of cavity detuning and tweezer power are consistent with a theoretical analysis of the experiment. Experimental limits and opportunities of our approach are outlined.
123 - Wenchao Ge , Brandon Rodenburg , 2016
Optically levitated nanoparticles have recently emerged as versatile platforms for investigating macroscopic quantum mechanics and enabling ultrasensitive metrology. In this article we theoretically consider two damping regimes of an optically levitated nanoparticle cooled by cavityless parametric feedback. Our treatment is based on a generalized Fokker-Planck equation derived from the quantum master equation presented recently and shown to agree very well with experiment [1]. For low damping, we find that the resulting Wigner function yields the single-peaked oscillator position distribution and recovers the appropriate energy distribution derived earlier using a classical theory and verified experimentally [2]. For high damping, in contrast, we predict a double-peaked position distribution, which we trace to an underlying bistability induced by feedback. Unlike in cavity-based optomechanics, stochastic processes play a major role in determining the bistable behavior. To support our conclusions, we present analytical expressions as well as numerical simulations using the truncated Wigner function approach. Our work opens up the prospect of developing bistability-based devices, characterization of phase-space dynamics, and investigation of the quantum-classical transition using levitated nanoparticles.
A mixed system of cooled and trapped, ions and atoms, paves the way for ion assisted cold chemistry and novel many body studies. Due to the different individual trapping mechanisms, trapped atoms are significantly colder than trapped ions, therefore in the combined system, the strong binary ion$-$atom interaction results in heat flow from ions to atoms. Conversely, trapped ions can also get collisionally heated by the cold atoms, making the resulting equilibrium between ions and atoms intriguing. Here we experimentally demonstrate, Rubidium ions (Rb$^+$) cool in contact with magneto-optically trapped (MOT) Rb atoms, contrary to the general expectation of ion heating for equal ion and atom masses. The cooling mechanism is explained theoretically and substantiated with numerical simulations. The importance of resonant charge exchange (RCx) collisions, which allows swap cooling of ions with atoms, wherein a single glancing collision event brings a fast ion to rest, is discussed.
We trap cold, ground-state, argon atoms in a deep optical dipole trap produced by a build-up cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of co-trapped metastable argon atoms using a new type of parametric loss spectroscopy. Using this technique we also determine the polarizability ratio between the ground and the metastable 4s[3/2]$_2$ state to be 40$pm6$ and find a polarisability of (7.3$pm$1.1) $times$10$^{-39}$ Cm$^2/$V for the metastable state. Finally, Penning and associative losses of metastable atoms, in the absence of light assisted collisions, are determined to be $(3.3pm 0.8) times 10^{-10}$ cm$^3$s$^{-1}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا