Do you want to publish a course? Click here

Trapping cold ground state argon atoms for sympathetic cooling of molecules

145   0   0.0 ( 0 )
 Added by Peter Barker
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We trap cold, ground-state, argon atoms in a deep optical dipole trap produced by a build-up cavity. The atoms, which are a general source for the sympathetic cooling of molecules, are loaded in the trap by quenching them from a cloud of laser-cooled metastable argon atoms. Although the ground state atoms cannot be directly probed, we detect them by observing the collisional loss of co-trapped metastable argon atoms using a new type of parametric loss spectroscopy. Using this technique we also determine the polarizability ratio between the ground and the metastable 4s[3/2]$_2$ state to be 40$pm6$ and find a polarisability of (7.3$pm$1.1) $times$10$^{-39}$ Cm$^2/$V for the metastable state. Finally, Penning and associative losses of metastable atoms, in the absence of light assisted collisions, are determined to be $(3.3pm 0.8) times 10^{-10}$ cm$^3$s$^{-1}$.



rate research

Read More

We demonstrate sympathetic sideband cooling of a $^{40}$CaH$^{+}$ molecular ion co-trapped with a $^{40}$Ca$^{+}$ atomic ion in a linear Paul trap. Both axial modes of the two-ion chain are simultaneously cooled to near the ground state of motion. The center of mass mode is cooled to an average quanta of harmonic motion $overline{n}_{mathrm{COM}} = 0.13 pm 0.03$, corresponding to a temperature of $12.47 pm 0.03 ~mu$K. The breathing mode is cooled to $overline{n}_{mathrm{BM}} = 0.05 pm 0.02$, corresponding to a temperature of $15.36 pm 0.01~mu$K.
A mixed system of cooled and trapped, ions and atoms, paves the way for ion assisted cold chemistry and novel many body studies. Due to the different individual trapping mechanisms, trapped atoms are significantly colder than trapped ions, therefore in the combined system, the strong binary ion$-$atom interaction results in heat flow from ions to atoms. Conversely, trapped ions can also get collisionally heated by the cold atoms, making the resulting equilibrium between ions and atoms intriguing. Here we experimentally demonstrate, Rubidium ions (Rb$^+$) cool in contact with magneto-optically trapped (MOT) Rb atoms, contrary to the general expectation of ion heating for equal ion and atom masses. The cooling mechanism is explained theoretically and substantiated with numerical simulations. The importance of resonant charge exchange (RCx) collisions, which allows swap cooling of ions with atoms, wherein a single glancing collision event brings a fast ion to rest, is discussed.
Carbon monoxide molecules in their electronic, vibrational, and rotational ground state are highly attractive for trapping experiments. The optical or ac electric traps that can be envisioned for these molecules will be very shallow, however, with depths in the sub-milliKelvin range. Here we outline that the required samples of translationally cold CO (X$^1Sigma^+$, $v$=0, $N$=0) molecules can be produced after Stark deceleration of a beam of laser-prepared metastable CO (a$^3Pi_1$) molecules followed by optical transfer of the metastable species to the ground state emph{via} perturbed levels in the A$^1Pi$ state. The optical transfer scheme is experimentally demonstrated and the radiative lifetimes and the electric dipole moments of the intermediate levels are determined.
269 - J. Kobayashi , K. Aikawa , K. Oasa 2013
We propose and experimentally investigate a scheme for narrow-line cooling of KRb molecules in the rovibrational ground state. We show that the spin-forbidden $mathrm{X^1Sigma^+} rightarrow mathrm{b^3Pi_{0^+}}$ transition of KRb is ideal for realizing narrow-line laser cooling of molecules because it has highly diagonal Franck-Condon factors and narrow linewidth. In order to confirm the prediction, we performed the optical and microwave spectroscopy of ultracold $^{41}$K$^{87}$Rb molecules, and determined the linewidth ($2pitimes$ 4.9(4) kHz) and Franck-Condon factors for the $mathrm{X^1Sigma^+} (v=0) rightarrow mathrm{b^3Pi_{0^+}} (v=0)$ transition (0.9474(1)). This result opens the door towards all-optical production of polar molecules at sub-microkelvin temperatures.
Ultracold CH radicals promise a fruitful testbed for probing quantum-state controllable organic chemistry. In this work, we calculate CH vibrational branching ratios (VBRs) and rotational branching ratios (RBRs) with ground state mixing. We subsequently use these values to inform optical cycling proposals and consider two possible radiative cooling schemes using the $X^{2}Pi leftarrow A^{2}Delta$ and $X^{2}Pi leftarrow B^{2}Sigma^{-}$ transitions. As a first step towards laser cooled CH, we characterize the effective buffer gas cooling of this species and produce $sim5times10^{10}$ CH molecules per pulse with a rotational temperature of 2(1) K and a translational temperature of 7(2) K. We also determine the CH-helium collisional cross section to be $2.4(8)times10^{-14}$ cm$^{2}$. This value is crucial to correctly account for collisional broadening and accurately extract the in-cell CH density. These cold CH molecules mark an ideal starting point for future laser cooling and trapping experiments and tests of cold organic chemistry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا