Do you want to publish a course? Click here

Properadic homotopical calculus

79   0   0.0 ( 0 )
 Added by Bruno Vallette
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we initiate the generalisation of the operadic calculus which governs the properties of homotopy algebras to a properadic calculus which governs the properties of homotopy gebras over a properad. In this first article of a series, we generalise the seminal notion of infini-morphisms and the ubiquitous homotopy transfer theorem. As an application, we recover the homotopy properties of involutive Lie bialgebras developed by Cieliebak--Fukaya--Latschev and we produce new explicit formulas.



rate research

Read More

We show that the celebrated operad of pre-Lie algebras is very rigid: it has no non-obvious degrees of freedom from either of the three points of view: deformations of maps to and from the three graces of operad theory, homotopy automorphisms, and operadic twisting. Examining the latter, it is possible to answer two questions of Markl from 2005, including a Lie-theoretic version of the Deligne conjecture.
95 - Cole Comfort 2020
We give a complete presentation for the fragment, ZX&, of the ZX-calculus generated by the Z and X spiders (corresponding to copying and addition) along with the not gate and the and gate. To prove completeness, we freely add a unit and counit to the category TOF generated by the Toffoli gate and ancillary bits, showing that this yields the full subcategory of finite ordinals and functions with objects powers of two; and then perform a two way translation between this category and ZX&. A translation to some extension of TOF, as opposed to some fragment of the ZX-calculus, is a natural choice because of the multiplicative nature of the Toffoli gate. To this end, we show that freely adding counits to the semi-Frobenius algebras of a discrete inverse category is the same as constructing the Cartesian completion. In particular, for a discrete inverse category, the category of classical channels, the Cartesian completion and adding counits all produce the same category. Therefore, applying these constructions to TOF produces the full subcategory of finite ordinals and partial maps with objects powers of two. By glueing together the free counit completion and the free unit completion, this yields qubit multirelations.
Given a bicovariant differential calculus $(mathcal{E}, d)$ such that the braiding map is diagonalisable in a certain sense, the bimodule of two-tensors admits a direct sum decomposition into symmetric and anti-symmetric tensors. This is used to prove the existence of a bicovariant torsionless connection on $mathcal{E}$. Following Heckenberger and Schm{u}dgen, we study invariant metrics and the compatibility of covariant connections with such metrics. A sufficient condition for the existence and uniqueness of bicovariant Levi-Civita connections is derived. This condition is shown to hold for cocycle deformations of classical Lie groups.
In this paper we present background results in enriched category theory and enriched model category theory necessary for developing model categories of enriched functors suitable for doing functor calculus.
157 - Frederic Chapoton 2007
The operad of moulds is realized in terms of an operational calculus of formal integrals (continuous formal power series). This leads to many simplifications and to the discovery of various suboperads. In particular, we prove a conjecture of the first author about the inverse image of non-crossing trees in the dendriform operad. Finally, we explain a connection with the formalism of noncommutative symmetric functions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا