Do you want to publish a course? Click here

An operational calculus for the Mould operad

157   0   0.0 ( 0 )
 Added by Frederic Chapoton
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

The operad of moulds is realized in terms of an operational calculus of formal integrals (continuous formal power series). This leads to many simplifications and to the discovery of various suboperads. In particular, we prove a conjecture of the first author about the inverse image of non-crossing trees in the dendriform operad. Finally, we explain a connection with the formalism of noncommutative symmetric functions.



rate research

Read More

141 - Anton Khoroshkin 2018
Given a symmetric operad $mathcal{P}$ and a $mathcal{P}$-algebra $V$, the associative universal enveloping algebra ${mathsf{U}_{mathcal{P}}}$ is an associative algebra whose category of modules is isomorphic to the abelian category of $V$-modules. We study the notion of PBW property for universal enveloping algebras over an operad. In case $mathcal{P}$ is Koszul a criterion for the PBW property is found. A necessary condition on the Hilbert series for $mathcal{P}$ is discovered. Moreover, given any symmetric operad $mathcal{P}$, together with a Grobner basis $G$, a condition is given in terms of the structure of the underlying trees associated with leading monomials of $G$, sufficient for the PBW property to hold. Examples are provided.
The well-known Baker-Campbell-Hausdorff theorem in Lie theory says that the logarithm of a noncommutative product e X e Y can be expressed in terms of iterated commutators of X and Y. This paper provides a gentle introduction t{o} Ecalles mould calculus and shows how it allows for a short proof of the above result, together with the classical Dynkin explicit formula [Dy47] for the logarithm, as well as another formula recently obtained by T. Kimura [Ki17] for the product of exponentials itself. We also analyse the relation between the two formulas and indicate their mould calculus generalization to a product of more exponentials.
192 - Frederic Chapoton 2007
Starting from an operad, one can build a family of posets. From this family of posets, one can define an incidence Hopf algebra. By another construction, one can also build a group directly from the operad. We then consider its Hopf algebra of functions. We prove that there exists a surjective morphism from the latter Hopf algebra to the former one. This is illustrated by the case of an operad built on rooted trees, the $NAP$ operad, where the incidence Hopf algebra is identified with the Connes-Kreimer Hopf algebra of rooted trees.
255 - Ryan Budney 2010
A new topological operad is introduced, called the splicing operad. This operad acts on a broad class of spaces of self-embeddings N --> N where N is a manifold. The action of this operad on EC(j,M) (self embeddings R^j x M --> R^j x M with support in I^j x M) is an extension of the action of the operad of (j+1)-cubes on this space. Moreover the action of the splicing operad encodes Larry Siebenmanns splicing construction for knots in S^3 in the j=1, M=D^2 case. The space of long knots in R^3 (denoted K_{3,1}) was shown to be a free 2-cubes object with free generating subspace P, the subspace of long knots that are prime with respect to the connect-sum operation. One of the main results of this paper is that K_{3,1} is free with respect to the splicing operad action, but the free generating space is the much `smaller space of torus and hyperbolic knots TH subset K_{3,1}. Moreover, the splicing operad for K_{3,1} has a `simple homotopy-type as an operad.
In this paper, we initiate the generalisation of the operadic calculus which governs the properties of homotopy algebras to a properadic calculus which governs the properties of homotopy gebras over a properad. In this first article of a series, we generalise the seminal notion of infini-morphisms and the ubiquitous homotopy transfer theorem. As an application, we recover the homotopy properties of involutive Lie bialgebras developed by Cieliebak--Fukaya--Latschev and we produce new explicit formulas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا