Do you want to publish a course? Click here

Robustness and scalability of p-bits implemented with low energy barrier nanomagnets

41   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Probabilistic (p-) bits implemented with low energy barrier nanomagnets (LBMs) have recently gained attention because they can be leveraged to perform some computational tasks very efficiently. Although more error-resilient than Boolean computing, p-bit based computing employing LBMs is, however, not completely immune to defects and device-to-device variations. In some tasks (e.g. binary stochastic neurons for machine learning and p-bits for population coding), extended defects, such as variation of the LBM thickness over a significant fraction of the surface, can impair functionality. In this paper, we have examined if unavoidable geometric device-to-device variations can have a significant effect on one of the most critical requirements for probabilistic computing, namely the ability to program probability with an external agent, such as a spin-polarized current injected into the LBM. We found that the programming ability is fortunately not lost due to reasonable device-to-device variations. The little variation in the probability versus current characteristic that reasonable device variability causes can be suppressed further by increasing the spin polarization of the current. This shows that probabilistic computing with LBMs is robust against small geometric variations, and hence will be scalable to a large number of p-bits.



rate research

Read More

The desire to perform information processing, computation, communication, signal generation and related tasks, while dissipating as little energy as possible, has inspired many ideas and paradigms. One of the most powerful among them is the notion of using magnetostrictive nanomagnets as the primitive units of the hardware platforms and manipulating their magnetizations with electrically generated static or time varying mechanical strain to elicit myriad functionalities. This approach has two advantages. First, information can be retained in the devices after powering off since the nanomagnets are non-volatile unlike charge-based devices such as transistors. Second, the energy expended to perform a given task is exceptionally low since it takes very little energy to alter magnetization states with strain. This field is now known as straintronics, in analogy with electronics, spintronics, valleytronics, etc. We review the recent advances and trends in straintronics, including digital information processing (logic), information storage (memory), domain wall devices operated with strain, control of skyrmions with strain, non-Boolean computing and machine learning with straintronics, signal generation (microwave sources) and communication (ultra-miniaturized acoustic and electromagnetic antennas) implemented with strained nanomagnets, hybrid straintronics-magnonics, and interaction between phonons and magnons in straintronic systems. We identify key challenges and opportunities, and lay out pathways to advance this field to the point where it might become a mainstream technology for energy-efficient systems.
In a two-dimensional arrangement of closely spaced elliptical nanomagnets with in-plane magnetic anisotropy, whose major axes are aligned along columns and minor axes along rows, dipole coupling will make the magnetic ordering ferromagnetic along the columns and anti-ferromagnetic along the rows. Noise and other perturbations can drive the system out of this ground state configuration and pin it in a metastable state where the magnetization orientations will not follow this pattern. Internal energy barriers, sufficiently larger than the thermal energy kT, will prevent the system from leaving the metastable state and decaying spontaneously to the ground state. These barriers can be temporarily eroded by globally straining the nanomagnets with time-varying strain if the nanomagnets are magnetostrictive, which will allow the system to return to ground state after strain is removed. This is a hardware emulation of simulated annealing in an interacting many body system. Here, we demonstrate this function experimentally.
71 - Simon Mendisch 2021
Comprehensive control of the domain wall nucleation process is crucial for spin-based emerging technologies ranging from random-access and storage-class memories over domain-wall logic concepts to nanomagnetic logic. In this work, focused Ga+ ion-irradiation is investigated as an effective means to control domain-wall nucleation in Ta/CoFeB/MgO nanostructures. We show that analogously to He+ irradiation, it is not only possible to reduce the perpendicular magnetic anisotropy but also to increase it significantly, enabling new, bidirectional manipulation schemes. First, the irradiation effects are assessed on film level, sketching an overview of the dose-dependent changes in the magnetic energy landscape. Subsequent time-domain nucleation characteristics of irradiated nanostructures reveal substantial increases in the anisotropy fields but surprisingly small effects on the measured energy barriers, indicating shrinking nucleation volumes. Spatial control of the domain wall nucleation point is achieved by employing focused irradiation of pre-irradiated magnets, with the diameter of the introduced circular defect controlling the coercivity. Special attention is given to the nucleation mechanisms, changing from a Stoner-Wohlfarth particles coherent rotation to depinning from an anisotropy gradient. Dynamic micromagnetic simulations and related measurements are used in addition to model and analyze this depinning-dominated magnetization reversal.
80 - J. L. Drobitch , A. De , K. Dutta 2020
Antennas typically have emission/radiation efficiencies bounded by A/(lambda)^2 (A < lambda^2) where A is the emitting area and lambda is the wavelength of the emitted wavelength. That makes it challenging to miniaturize antennas to extreme sub-wavelength dimensions. One way to overcome this challenge is to actuate an antenna not at the resonance of the emitted wave, but at the resonance of a different excitation that has a much shorter wavelength at the same frequency. We have actuated an electromagnetic (EM) antenna with a surface acoustic wave (SAW) whose wavelength is about five orders of magnitude smaller than the EM wavelength at the same frequency. This allowed us to implement an extreme sub-wavelength EM antenna, radiating an EM wave of wavelength lambda = 2 m, whose emitting area is ~10^-8 m2 (A/lambda^2 = 2.5 10^-9), and whose measured radiation efficiency exceeded the A/(lambda)^2 limit by over 10^5. The antenna consisted of magnetostrictive nanomagnets deposited on a piezoelectric substrate. A SAW launched in the substrate with an alternating electrical voltage periodically strained the nanomagnets and rotated their magnetizations owing to the Villari effect. The oscillating magnetizations emitted EM waves at the frequency of the SAW. These extreme sub-wavelength antennas, that radiate with efficiencies a few orders of magnitude larger than the A/(lambda)^2 limit, allow drastic miniaturization of communication systems.
In this work, vertical tunnel field-effect transistors (v-TFETs) based on vertically stacked heretojunctions from 2D transition metal dichalcogenide (TMD) materials are studied by atomistic quantum transport simulations. The switching mechanism of v-TFET is found to be different from previous predictions. As a consequence of this switching mechanism, the extension region, where the materials are not stacked over is found to be critical for turning off the v-TFET. This extension region makes the scaling of v-TFETs challenging. In addition, due to the presence of both positive and negative charges inside the channel, v-TFETs also exhibit negative capacitance. As a result, v-TFETs have good energy-delay products and are one of the promising candidates for low power applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا