Do you want to publish a course? Click here

The non-equilibrium part of the inertial range in decaying homogeneous turbulence

146   0   0.0 ( 0 )
 Added by Martin Obligado
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use two related non-stationarity functions as measures of the degree of scale-by-scale non-equilibrium in homogeneous isotropic turbulence. The values of these functions indicate significant non-equilibrium at the upper end of the inertial range. Wind tunnel data confirm Lundgrens (2002, 2003) prediction that the two-point separation $r$ where the second and third order structure functions are closest to their Kolmogorov scalings is proportional to the Taylor length scale $lambda$, and that both structure functions increasingly distance themselves from their Kolmogorov equilibrium form as $r$ increases away from $lambda$ throughout the inertial range. With the upper end of the inertial range in non-equilibrium irrespective of Reynolds number, it is not possible to justify the Taylor-Kolmogorov turbulence dissipation scaling on the basis of Kolmogorov equilibrium.



rate research

Read More

The previously reported non-equilibrium dissipation law is investigated in turbulent flows generated by various regular and fractal square grids. The flows are documented in terms of various turbulent profiles which reveal their differences. In spite of significant inhomogeneity and anisotropy differences, the new non-equilibrium dissipation law is observed in all these flows. Various transverse and longitudinal integral scales are measured and used to define the dissipation coefficient $C_{varepsilon}$. It is found that the new non-equilibrium dissipation law is not an artefact of a particular choice of the integral scale and that the usual equilibrium dissipation law can actually coexist with the non-equilibrium law in different regions of the same flow.
We investigate non-equilibrium turbulence where the non-dimensionalised dissipation coefficient $C_{varepsilon}$ scales as $C_{varepsilon} sim Re_{M}^{m}/Re_{ell}^{n}$ with $mapprox 1 approx n$ ($Re_M$ and $Re_{ell}$ are global/inlet and local Reynolds numbers respectively) by measuring the downstream evolution of the scale-by-scale energy transfer, dissipation, advection, production and transport in the lee of a square-mesh grid and compare with a region of equilibrium turbulence (i.e. where $C_{varepsilon}approx mathrm{constant}$). These are the main terms of the inhomogeneous, anisotropic version of the von K{a}rm{a}n-Howarth-Monin equation. It is shown in the grid-generated turbulence studied here that, even in the presence of non-negligible turbulence production and transport, production and transport are large-scale phenomena that do not contribute to the scale-by-scale balance for scales smaller than about a third of the integral-length scale, $ell$, and therefore do not affect the energy transfer to the small-scales. In both the non-equilibrium and the equilibrium decay regions, the peak of the scale-by-scale energy transfer scales as $(overline{u^2})^{3/2}/ell$ ($overline{u^2}$ is the variance of the longitudinal fluctuating velocity). In the non-equilibrium case this scaling implies an imbalance between the energy transfer to the small scales and the dissipation. This imbalance is reflected on the small-scale advection which becomes larger in proportion to the maximum energy transfer as the turbulence decays whereas it stays proportionally constant in the further downstream equilibrium region where $C_{varepsilon} approx mathrm{constant}$ even though $Re_{ell}$ is lower.
197 - Wouter Bos 2010
Two-dimensional statistically stationary isotropic turbulence with an imposed uniform scalar gradient is investigated. Dimensional arguments are presented to predict the inertial range scaling of the turbulent scalar flux spectrum in both the inverse cascade range and the enstrophy cascade range for small and unity Schmidt numbers. The scaling predictions are checked by direct numerical simulations and good agreement is observed.
We present an experimental study on the settling velocity of dense sub-Kolmogorov particles in active-grid-generated turbulence in a wind tunnel. Using phase Doppler interferometry, we observe that the modifications of the settling velocity of inertial particles, under homogeneous isotropic turbulence and dilute conditions $phi_vleq O(10)^{-5}$, is controlled by the Taylor-based Reynolds number $Re_lambda$ of the carrier flow. On the contrary, we did not find a strong influence of the ratio between the fluid and gravity accelerations (i.e., $gammasim(eta/tau_eta^2)/g$) on the particle settling behavior. Remarkably, our results suggest that the hindering of the settling velocity (i.e. the measured particle settling velocity is smaller than its respective one in still fluid conditions) experienced by the particles increases with the value of $Re_lambda$, reversing settling enhancement found under intermediate $Re_lambda$ conditions. This observation applies to all particle sizes investigated, and it is consistent with previous experimental data in the literature. At the highest $Re_lambda$ studied, $Re_lambda>600$, the particle enhancement regime ceases to exist. Our data also show that for moderate Rouse numbers, the difference between the measured particle settling velocity and its velocity in still fluid conditions scales linearly with Rouse, when this difference is normalized by the carrier phase rms fluctuations, i.e., $(V_p-V_T)/usim -Ro$.
The transitional and well-developed regimes of turbulent shear flows exhibit a variety of remarkable scaling laws that are only now beginning to be systematically studied and understood. In the first part of this article, we summarize recent progress in understanding the friction factor of turbulent flows in rough pipes and quasi-two-dimensional soap films, showing how the data obey a two-parameter scaling law known as roughness-induced criticality, and exhibit power-law scaling of friction factor with Reynolds number that depends on the precise form of the nature of the turbulent cascade. These results hint at a non-equilibrium fluctuation-dissipation relation that applies to turbulent flows. The second part of this article concerns the lifetime statistics in smooth pipes around the transition, showing how the remarkable super-exponential scaling with Reynolds number reflects deep connections between large deviation theory, extreme value statistics, directed percolation and the onset of coexistence in predator-prey ecosystems. Both these phenomena reflect the way in which turbulence can be fruitfully approached as a problem in non-equilibrium statistical mechanics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا