Do you want to publish a course? Click here

The effect of $Re_lambda$ and Rouse numbers on the settling of inertial particles in homogeneous isotropic turbulence

103   0   0.0 ( 0 )
 Added by Daniel Andres Mora
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an experimental study on the settling velocity of dense sub-Kolmogorov particles in active-grid-generated turbulence in a wind tunnel. Using phase Doppler interferometry, we observe that the modifications of the settling velocity of inertial particles, under homogeneous isotropic turbulence and dilute conditions $phi_vleq O(10)^{-5}$, is controlled by the Taylor-based Reynolds number $Re_lambda$ of the carrier flow. On the contrary, we did not find a strong influence of the ratio between the fluid and gravity accelerations (i.e., $gammasim(eta/tau_eta^2)/g$) on the particle settling behavior. Remarkably, our results suggest that the hindering of the settling velocity (i.e. the measured particle settling velocity is smaller than its respective one in still fluid conditions) experienced by the particles increases with the value of $Re_lambda$, reversing settling enhancement found under intermediate $Re_lambda$ conditions. This observation applies to all particle sizes investigated, and it is consistent with previous experimental data in the literature. At the highest $Re_lambda$ studied, $Re_lambda>600$, the particle enhancement regime ceases to exist. Our data also show that for moderate Rouse numbers, the difference between the measured particle settling velocity and its velocity in still fluid conditions scales linearly with Rouse, when this difference is normalized by the carrier phase rms fluctuations, i.e., $(V_p-V_T)/usim -Ro$.



rate research

Read More

207 - K. Zhao , F.Pomes , B. Vowinckel 2021
We investigate the dynamics of cohesive particles in homogeneous isotropic turbulence, based on one-way coupled simulations that include Stokes drag, lubrication, cohesive and direct contact forces. We observe a transient flocculation phase characterized by a growing average floc size, followed by a statistically steady equilibrium phase. We analyze the temporal evolution of floc size and shape due to aggregation, breakage, and deformation. Larger turbulent shear and weaker cohesive forces yield elongated flocs that are smaller in size. Flocculation proceeds most rapidly when the fluid and particle time scales are balanced and a suitably defined Stokes number is textit{O}(1). During the transient stage, cohesive forces of intermediate strength produce flocs of the largest size, as they are strong enough to cause aggregation, but not so strong as to pull the floc into a compact shape. Small Stokes numbers and weak turbulence delay the onset of the equilibrium stage. During equilibrium, stronger cohesive forces yield flocs of larger size. The equilibrium floc size distribution exhibits a preferred size that depends on the cohesive number. We observe that flocs are generally elongated by turbulent stresses before breakage. Flocs of size close to the Kolmogorov length scale preferentially align themselves with the intermediate strain direction and the vorticity vector. Flocs of smaller size tend to align themselves with the extensional strain direction. More generally, flocs are aligned with the strongest Lagrangian stretching direction. The Kolmogorov scale is seen to limit floc growth. We propose a new flocculation model with a variable fractal dimension that predicts the temporal evolution of the floc size and shape.
We use theory and Direct Numerical Simulations (DNS) to explore the average vertical velocities and spatial distributions of inertial particles settling in a wall-bounded turbulent flow. The theory is based on the exact phase-space equation for the Probability Density Function describing particle positions and velocities. This allowed us to identify the distinct physical mechanisms governing the particle transport. We then examined the asymptotic behavior of the particle motion near the wall, revealing the fundamental differences to the near wall behavior that is produced when incorporating gravitational settling. When the average vertical particle mass flux is zero, the averaged vertical particle velocity is zero away from the wall due to the particles preferentially sampling regions where the fluid velocity is positive, which balances with the downward Stokes settling velocity. When the average mass flux is negative, the combined effects of turbulence and particle inertia lead to average vertical particle velocities that can significantly exceed the Stokes settling velocity, by as much as ten times. Sufficiently far from the wall, the enhanced vertical velocities are due to the preferential sweeping mechanism. However, as the particles approach the wall, the contribution from the preferential sweeping mechanism becomes small, and a downward contribution from the turbophoretic velocity dominates the behavior. Close to the wall, the particle concentration grows as a power-law, but the nature of this power law depends on the particle Stokes number. Finally, our results highlight how the Rouse model of particle concentration is to be modified for particles with finite inertia.
107 - Cheng Li , Kaeul Lim , Tim Berk 2020
The effect of turbulence on snow precipitation is not incorporated into present weather forecasting models. Here we show evidence that turbulence is in fact a key influence on both fall speed and spatial distribution of settling snow. We consider three snowfall events under vastly different levels of atmospheric turbulence. We characterize the size and morphology of the snow particles, and we simultaneously image their velocity, acceleration, and relative concentration over vertical planes about 30 m2 in area. We find that turbulence-driven settling enhancement explains otherwise contradictory trends between the particle size and velocity. The estimates of the Stokes number and the correlation between vertical velocity and local concentration indicate that the enhanced settling is rooted in the preferential sweeping mechanism. When the snow vertical velocity is large compared to the characteristic turbulence velocity, the crossing trajectories effect results in strong accelerations. When the conditions of preferential sweeping are met, the concentration field is highly non-uniform and clustering appears over a wide range of scales. These clusters, identified for the first time in a naturally occurring flow, display the signature features seen in canonical settings: power-law size distribution, fractal-like shape, vertical elongation, and large fall speed that increases with the cluster size. These findings demonstrate that the fundamental phenomenology of particle-laden turbulence can be leveraged towards a better predictive understanding of snow precipitation and ground snow accumulation. They also demonstrate how environmental flows can be used to investigate dispersed multiphase flows at Reynolds numbers not accessible in laboratory experiments or numerical simulations.
187 - Josin Tom , Andrew D Bragg 2018
In a seminal article, citet[J. Fluid Mech., 174:441-465]{maxey87} presented a theoretical analysis showing that enhanced particle settling speeds in turbulence occur through the preferential sweeping mechanism, which depends on the preferential sampling of the fluid velocity gradient field by the inertial particles. However, recent Direct Numerical Simulation (DNS) results in citet[J. Fluid Mech., 796:659--711]{ireland16b} show that even in a portion of the parameter space where this preferential sampling is absent, the particles nevertheless exhibit enhanced settling velocities. Further, there are several outstanding questions concerning the role of different turbulent flow scales on the enhanced settling, and the role of the Taylor Reynolds number $R_lambda$. The analysis of Maxey does not explain these issues, partly since it was restricted to particle Stokes numbers $Stll1$. To address these issues, we have developed a new theoretical result, valid for arbitrary $St$, that reveals the multiscale nature of the mechanism generating the enhanced settling speeds. In particular, it shows how the range of scales at which the preferential sweeping mechanism operates depends on $St$. This analysis is complemented by results from DNS where we examine the role of different flow scales on the particle settling speeds by coarse-graining the underlying flow. The results show how the flow scales that contribute to the enhanced settling depend on $St$, and that contrary to previous claims, there can be no single turbulent velocity scale that characterizes the enhanced settling speed. The results explain the dependence of the particle settling speeds on $R_lambda$, and show how the saturation of this dependence at sufficiently large $R_lambda$ depends upon $St$. The results also show ...
We analyze the vector nulls of velocity, Lagrangian acceleration, and vorticity, coming from direct numerical simulations of forced homogeneous isotropic turbulence at $Re_lambda in [40-610]$. We show that the clustering of velocity nulls is much stronger than those of acceleration and vorticity nulls. These acceleration and vorticity nulls, however, are denser than the velocity nulls. We study the scaling of clusters of these null points with $Re_lambda$ and with characteristic turbulence lengthscales. We also analyze datasets of point inertial particles with Stokes numbers $St = 0.5$, 3, and 6, at $Re_lambda = 240$. Inertial particles display preferential concentration with a degree of clustering that resembles some properties of the clustering of the Lagrangian acceleration nulls, in agreement with the proposed sweep-stick mechanism of clustering formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا