Do you want to publish a course? Click here

Ultra-thin van der Waals crystals as semiconductor quantum wells

73   0   0.0 ( 0 )
 Added by Johanna Zultak
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Control over the electronic spectrum at low energy is at the heart of the functioning of modern advanced electronics: high electron mobility transistors, semiconductor and Capasso terahertz lasers, and many others. Most of those devices rely on the meticulous engineering of the size quantization of electrons in quantum wells. This avenue, however, hasnt been explored in the case of 2D materials. Here we transfer this concept onto the van der Waals heterostructures which utilize few-layers films of InSe as quantum wells. The precise control over the energy of the subbands and their uniformity guarantees extremely high quality of the electronic transport in such systems. Using novel tunnelling and light emitting devices, for the first time we reveal the full subbands structure by studying resonance features in the tunnelling current, photoabsorption and light emission. In the future, these systems will allow development of elementary blocks for atomically thin infrared and THz light sources based on intersubband optical transitions in few-layer films of van der Waals materials.



rate research

Read More

The science and applications of electronics and optoelectronics have been driven for decades by progress in growth of semiconducting heterostructures. Many applications in the infrared and terahertz frequency range exploit transitions between quantized states in semiconductor quantum wells (intersubband transitions). However, current quantum well devices are limited in functionality and versatility by diffusive interfaces and the requirement of lattice-matched growth conditions. Here, we introduce the concept of intersubband transitions in van der Waals quantum wells and report their first experimental observation. Van der Waals quantum wells are naturally formed by two-dimensional (2D) materials and hold unexplored potential to overcome the aforementioned limitations: They form atomically sharp interfaces and can easily be combined into heterostructures without lattice-matching restrictions. We employ near-field local probing to spectrally resolve and electrostatically control the intersubband absorption with unprecedented nanometer-scale spatial resolution. This work enables exploiting intersubband transitions with unmatched design freedom and individual electronic and optical control suitable for photodetectors, LEDs and lasers.
Recent technical progress demonstrates the possibility of stacking together virtually any combination of atomically thin crystals of van der Waals bonded compounds to form new types of heterostructures and interfaces. As a result, there is the need to understand at a quantitative level how the interfacial properties are determined by the properties of the constituent 2D materials. We address this problem by studying the transport and optoelectronic response of two different interfaces based on transition-metal dichalcogenide monolayers, namely WSe2-MoSe2 and WSe2-MoS2. By exploiting the spectroscopic capabilities of ionic liquid gated transistors, we show how the conduction and valence bands of the individual monolayers determine the bands of the interface, and we establish quantitatively (directly from the measurements) the energetic alignment of the bands in the different materials as well as the magnitude of the interfacial band gap. Photoluminescence and photocurrent measurements allow us to conclude that the band gap of the WSe2-MoSe2 interface is direct in k space, whereas the gap of WSe2/MoS2 is indirect. For WSe2/MoSe2, we detect the light emitted from the decay of interlayer excitons and determine experimentally their binding energy using the values of the interfacial band gap extracted from transport measurements. The technique that we employed to reach this conclusion demonstrates a rather-general strategy for characterizing quantitatively the interfacial properties in terms of the properties of the constituent atomic layers. The results presented here further illustrate how van der Waals interfaces of two distinct 2D semiconducting materials are composite systems that truly behave as artificial semiconductors, the properties of which can be deterministically defined by the selection of the appropriate constituent semiconducting monolayers.
Van der Waals materials and heterostructures manifesting strongly bound room temperature exciton states exhibit emergent physical phenomena and are of a great promise for optoelectronic applications. Here, we demonstrate that nanostructured multilayer transition metal dichalcogenides by themselves provide an ideal platform for excitation and control of excitonic modes, paving the way to exciton-photonics. Hence, we show that by patterning the TMDCs into nanoresonators, strong dispersion and avoided crossing of excitons and hybrid polaritons with interaction potentials exceeding 410 meV may be controlled with great precision. We further observe that inherently strong TMDC exciton absorption resonances may be completely suppressed due to excitation of hybrid photon states and their interference. Our work paves the way to a next generation of integrated exciton optoelectronic nano-devices and applications in light generation, computing, and sensing.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
Van der Waals (vdW) semiconductors are attractive for highly scaled devices and heterogeneous integration since they can be isolated into self-passivated, two-dimensional (2D) layers that enable superior electrostatic control. These attributes have led to numerous demonstrations of field-effect devices ranging from transistors to triodes. By exploiting the controlled, substitutional doping schemes in covalently-bonded, three-dimensional (3D) semiconductors and the passivated surfaces of 2D semiconductors, one can construct devices that can exceed performance metrics of all-2D vdW heterojunctions. Here, we demonstrate, 2D/3D semiconductor heterojunctions using MoS2 as the prototypical 2D semiconductor laid upon Si and GaN as the 3D semiconductor layers. By tuning the Fermi levels in MoS2, we demonstrate devices that concurrently exhibit over seven orders of magnitude modulation in rectification ratios and conductance. Our results further suggest that the interface quality does not necessarily affect Fermi-level tuning at the junction opening up possibilities for novel 2D/3D heterojunction device architectures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا