No Arabic abstract
Pulsation frequencies reveal the interior structures of white dwarf stars, shedding light on the properties of these compact objects that represent the final evolutionary stage of most stars. Two-minute cadence photometry from TESS will record pulsation signatures from bright white dwarfs over the entire sky. We aim to demonstrate the sensitivity of TESS data to measuring pulsations of helium-atmosphere white dwarfs in the DBV instability strip, and what asteroseismic analysis of these measurements can constrain about their stellar structures. We present a case study of the pulsating DBV WD 0158$-$160 that was observed as TIC 257459955 with the 2-minute cadence for 20.3 days in TESS Sector 3. We measure the frequencies of variability of TIC 257459955 with an iterative periodogram and prewhitening procedure. The measured frequencies are compared to calculations from two sets of white dwarf models to constrain the stellar parameters: the fully evolutionary models from LPCODE, and the structural models from WDEC. We detect and measure the frequencies of nine pulsation modes and eleven combination frequencies of WD 0158$-$160 to $sim0.01 mu$Hz precision. Most, if not all, of the observed pulsations belong to an incomplete sequence of dipole ($ell=1$) modes with a mean period spacing of $38.1pm1.0$ s. The global best-fit seismic models from both codes have effective temperatures that are $gtrsim3000$ K hotter than archival spectroscopic values of $24{,}100-25{,}500$ K; however, cooler secondary solutions are found that are consistent with both the spectroscopic effective temperature and distance constraints from Gaia astrometry.
Context. We present our findings on 18 formerly known ZZ Ceti stars observed by the TESS space telescope in 120s cadence mode during the survey observation of the southern ecliptic hemisphere. Aims. We focus on the frequency analysis of the space-based observations, comparing the results with the findings of the previous ground-based measurements. The frequencies detected by the TESS observations can serve as inputs for future asteroseismic analyses. Methods. We performed standard pre-whitening of the data sets to derive the possible pulsation frequencies of the different targets. In some cases, we fitted Lorentzians to the frequency groups that emerged as the results of short-term amplitude/phase variations that occurred during the TESS observations. Results. We detected more than 40 pulsation frequencies in seven ZZ Ceti stars observed in the 120s cadence by TESS, with better than 0.1 microHz precision. We found that HE 0532-5605 may be a new outbursting ZZ Ceti. Ten targets do not show any significant pulsation frequencies in their Fourier transforms, due to a combination of their intrinsic faintness and/or crowding on the large TESS pixels. We also detected possible amplitude/phase variations during the TESS observations in some cases. Such behaviour in these targets was not previously identified from ground-based observations.
We present analysis of a new pulsating helium-atmosphere (DB) white dwarf, EPIC~228782059, discovered from 55.1~days of {em K2} photometry. The long duration, high quality light curves reveal 11 independent dipole and quadruple modes, from which we derive a rotational period of $34.1 pm 0.4$~hr for the star. An optimal model is obtained from a series of grids constructed using the White Dwarf Evolution Code, which returns $M_{*} = 0.685 pm 0.003 M_{odot}$, $T_{rm{eff}}= 21{,}910 pm 23$,K and $log g = 8.14 pm0.01$,dex. These values are comparable to those derived from spectroscopy by Koester & Kepler ($20{,}860 pm 160$,K and $7.94 pm0.03$,dex). If these values are confirmed or better constrained by other independent works, it would make EPIC~228782059 one of the coolest pulsating DB white dwarf star known, and would be helpful to test different physical treatments of convection, and to further investigate the theoretical instability strip of DB white dwarf stars.
At present, a large number of pulsating white dwarf (WD) stars is being discovered either from Earth-based surveys such as the Sloan Digital Sky Survey, or through observations from space (e.g., the Kepler mission). The asteroseismological techniques allow us to infer details of internal chemical stratification, the total mass, and even the stellar rotation profile. In this paper, we first describe the basic properties of WD stars and their pulsations, as well as the different sub-types of these variables known so far. Subsequently, we describe some recent findings about pulsating low-mass WDs.
We present the discovery and asteroseismic analysis of a new g-mode hot B subdwarf (sdB) pulsator, EC 21494-7018 (TIC 278659026), monitored in TESS first sector using 120-second cadence. The light curve analysis reveals that EC 21494-7018 is a sdB pulsator counting up to 20 frequencies associated with independent g-modes. The seismic analysis singles out an optimal model solution in full agreement with independent measurements provided by spectroscopy (atmospheric parameters derived from model atmospheres) and astrometry (distance evaluated from Gaia DR2 trigonometric parallax). Several key parameters of the star are derived. Its mass (0.391 +/- 0.009 Msun) is significantly lower than the typical mass of sdB stars, and suggests that its progenitor has not undergone the He-core flash, and therefore could originate from a massive (>2 Msun) red giant, an alternative channel for the formation of hot B subdwarfs. Other derived parameters include the H-rich envelope mass (0.0037 +/- 0.0010 Msun), radius (0.1694 +/- 0.0081 Rsun), and luminosity (8.2+/-1.1 Lsun). The optimal model fit has a double-layered He+H composition profile, which we interpret as an incomplete but ongoing process of gravitational settling of helium at the bottom of a thick H-rich envelope. Moreover, the derived properties of the core indicate that EC 21494-7018 has burnt ~43% (in mass) of its central helium and possesses a relatively large mixed core (Mcore = 0.198 +/- 0.010 Msun), in line with trends already uncovered from other g-mode sdB pulsators analysed with asteroseismology. Finally, we obtain for the first time an estimate of the amount of oxygen (in mass; X(O)core = 0.16 -0.05 +0.13) produced at this stage of evolution by an helium-burning core. This result, along with the core-size estimate, is an interesting constraint that may help to narrow down the still uncertain C12(alpha,gamma)O16 nuclear reaction rate.
We present the results of our survey searching for new white dwarf pulsators for observations by the TESS space telescope. We collected photometric time-series data on 14 white dwarf variable-candidates at Konkoly Observatory, and found two new bright ZZ Ceti stars, namely EGGR 120 and WD 1310+583. We performed the Fourier-analysis of the datasets. In the case of EGGR 120, which was observed on one night only, we found one significant frequency at 1332 microHz with 2.3 mmag amplitude. We successfully observed WD 1310+583 on eight nights, and determined 17 significant frequencies by the whole dataset. Seven of them seem to be independent pulsation modes between 634 and 2740 microHz, and we performed preliminary asteroseismic investigations of the star utilizing six of these periods. We also identified three new light variables on the fields of white dwarf candidates: an eclipsing binary, a candidate delta Scuti/beta Cephei and a candidate W UMa-type star.