Do you want to publish a course? Click here

The SUrvey for Pulsars and Extragalactic Radio Bursts IV: Discovery and polarimetry of a 12.1-second radio pulsar

81   0   0.0 ( 0 )
 Added by Vincent Morello
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of PSR~J2251$-$3711, a radio pulsar with a spin period of 12.1 seconds, the second longest currently known. Its timing parameters imply a characteristic age of 15 Myr, a surface magnetic field of $1.3 times 10^{13}$~G and a spin-down luminosity of $2.9 times 10^{29}~mathrm{erg~s}^{-1}$. Its dispersion measure of 12.12(1)~$mathrm{pc}~mathrm{cm}^{-3}$ leads to distance estimates of 0.5 and 1.3 kpc according to the NE2001 and YMW16 Galactic free electron density models, respectively. Some of its single pulses show an uninterrupted 180 degree sweep of the phase-resolved polarization position angle, with an S-shape reminiscent of the rotating vector model prediction. However, the fact that this sweep occurs at different phases from one pulse to another is remarkable and without straightforward explanation. Although PSR~J2251$-$3711 lies in the region of the $P-dot{P}$ parameter space occupied by the X-ray Isolated Neutron Stars (XINS), there is no evidence for an X-ray counterpart in our Swift XRT observation; this places a 99%-confidence upper bound on its unabsorbed bolometric thermal luminosity of $1.1 times 10^{31}~(d / 1~mathrm{kpc})^2~mathrm{erg/s}$ for an assumed temperature of 85 eV, where $d$ is the distance to the pulsar. Further observations are needed to determine whether it is a rotation-powered pulsar with a true age of at least several Myr, or a much younger object such as an XINS or a recently cooled magnetar. Extreme specimens like PSR J2251$-$3711 help bridge populations in the so-called neutron star zoo in an attempt to understand their origins and evolution.

rate research

Read More

We describe the Survey for Pulsars and Extragalactic Radio Bursts (SUPERB), an ongoing pulsar and fast transient survey using the Parkes radio telescope. SUPERB involves real-time acceleration searches for pulsars and single-pulse searches for pulsars and fast radio bursts. We report on the observational setup, data analysis, multi-wavelength/messenger connections, survey sensitivities to pulsars and fast radio bursts and the impact of radio frequency interference. We further report on the first 10 pulsars discovered in the project. Among these is PSR~J1306$-$40, a millisecond pulsar in a binary system where it appears to be eclipsed for a large fraction of the orbit. PSR~J1421$-$4407 is another binary millisecond pulsar; its orbital period is $30.7$ days. This orbital period is in a range where only highly eccentric binaries are known, and expected by theory; despite this its orbit has an eccentricity of $10^{-5}$.
We report the discovery of four Fast Radio Bursts (FRBs) in the ongoing SUrvey for Pulsars and Extragalactic Radio Bursts (SUPERB) at the Parkes Radio Telescope: FRBs 150610, 151206, 151230 and 160102. Our real-time discoveries have enabled us to conduct extensive, rapid multi-messenger follow-up at 12 major facilities sensitive to radio, optical, X-ray, gamma-ray photons and neutrinos on time scales ranging from an hour to a few months post-burst. No counterparts to the FRBs were found and we provide upper limits on afterglow luminosities. None of the FRBs were seen to repeat. Formal fits to all FRBs show hints of scattering while their intrinsic widths are unresolved in time. FRB 151206 is at low Galactic latitude, FRB 151230 shows a sharp spectral cutoff, and FRB 160102 has the highest dispersion measure (DM = $2596.1pm0.3$ pc cm$^{-3}$) detected to date. Three of the FRBs have high dispersion measures (DM >$1500$ pc cm$^{-3}$), favouring a scenario where the DM is dominated by contributions from the Intergalactic Medium. The slope of the Parkes FRB source counts distribution with fluences $>2$ Jyms is $alpha=-2.2^{+0.6}_{-1.2}$ and still consistent with a Euclidean distribution ($alpha=-3/2$). We also find that the all-sky rate is $1.7^{+1.5}_{-0.9}times10^3$FRBs/($4pi$ sr)/day above $sim2$ Jyms and there is currently no strong evidence for a latitude-dependent FRB sky-rate.
77 - C. M. Tan 2018
We present the discovery of PSR J0250+5854, a radio pulsar with a spin period of 23.5 s. This is the slowest-spinning radio pulsar known. PSR J0250+5854 was discovered by the LOFAR Tied-Array All-Sky Survey (LOTAAS), an all-Northern-sky survey for pulsars and fast transients at a central observing frequency of 135 MHz. We subsequently detected pulsations from the pulsar in the interferometric images of the LOFAR Two-metre Sky Survey, allowing for sub-arcsecond localization. This, along with a pre-discovery detection 2 years prior, allowed us to measure the spin-period derivative to be $dot{P}=2.7 times 10^{-14}$ s s$^{-1}$. The observed spin period derivative of PSR J0250+5854 indicates a surface magnetic field strength, characteristic age and spin-down luminosity of $2.6 times 10^{13}$G, $13.7$ Myr and $8.2 times 10^{28}$ erg s$^{-1}$ respectively, for a dipolar magnetic field configuration. This also places the pulsar beyond the conventional pulsar death line, where radio emission is expected to cease. The spin period of PSR J0250+5854 is similar to those of the high-energy-emitting magnetars and X-ray dim isolated neutron stars (XDINSs). However, the pulsar was not detected by the Swift/XRT in the energy band of 0.3-10 keV, placing a bolometric luminosity limit of $1.5 times 10^{32}$ erg s$^{-1}$ for an assumed $N_{rm H}=1.35times10^{21}$ cm$^{-2}$ and a temperature of 85 eV (typical of XDINSs). We discuss the implications of the discovery for models of the pulsar death line as well as the prospect of finding more similarly long-period pulsars, including the advantages provided by LOTAAS for this.
We report on a search for Fast Radio Bursts (FRBs) with the Green Bank Northern Celestial Cap (GBNCC) Pulsar Survey at 350 MHz. Pointings amounting to a total on-sky time of 61 days were searched to a DM of 3000 pc cm$^{-3}$ while the rest (23 days; 29% of the total time) were searched to a DM of 500 pc cm$^{-3}$. No FRBs were detected in the pointings observed through May 2016. We estimate a 95% confidence upper limit on the FRB rate of $3.6times 10^3$ FRBs sky$^{-1}$ day$^{-1}$ above a peak flux density of 0.63 Jy at 350 MHz for an intrinsic pulse width of 5 ms. We place constraints on the spectral index $alpha$ by running simulations for different astrophysical scenarios and cumulative flux density distributions. The non-detection with GBNCC is consistent with the 1.4-GHz rate reported for the Parkes surveys for $alpha > +0.35 $ in the absence of scattering and free-free absorption and $alpha > -0.3$ in the presence of scattering, for a Euclidean flux distribution. The constraints imply that FRBs exhibit either a flat spectrum or a spectral turnover at frequencies above 400 MHz. These constraints also allow estimation of the number of bursts that can be detected with current and upcoming surveys. We predict that CHIME may detect anywhere from several to $sim$50 FRBs a day (depending on model assumptions), making it well suited for interesting constraints on spectral index, the log $N$-log $S$ slope and pulse profile evolution across its bandwidth (400-800 MHz).
We have reprocessed a set of observations of 75 bright, unidentified, steep-spectrum polarized radio sources taken with the Green Bank 43-m telescope to find previously undetected sub-millisecond pulsars and radio bursts. The (null) results of the first search of these data were reported by Schmidt et al. Our reprocessing searched for single pulses out to a dispersion measure (DM) of 1000 pc cm$^{-3}$ which were classified using the Deep Learning based classifier FETCH. We also searched for periodicities at a wider range of DMs and accelerations. Our search was sensitive to highly accelerated, rapidly rotating pulsars (including sub-millisecond pulsars) in compact binary systems as well as to highly-dispersed impulsive signals, such as fast radio bursts. No pulsars or astrophysical burst signals were found in the reprocessing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا