Do you want to publish a course? Click here

LOFAR discovery of a 23.5-second radio pulsar

78   0   0.0 ( 0 )
 Added by Chia Min Tan
 Publication date 2018
  fields Physics
and research's language is English
 Authors C. M. Tan




Ask ChatGPT about the research

We present the discovery of PSR J0250+5854, a radio pulsar with a spin period of 23.5 s. This is the slowest-spinning radio pulsar known. PSR J0250+5854 was discovered by the LOFAR Tied-Array All-Sky Survey (LOTAAS), an all-Northern-sky survey for pulsars and fast transients at a central observing frequency of 135 MHz. We subsequently detected pulsations from the pulsar in the interferometric images of the LOFAR Two-metre Sky Survey, allowing for sub-arcsecond localization. This, along with a pre-discovery detection 2 years prior, allowed us to measure the spin-period derivative to be $dot{P}=2.7 times 10^{-14}$ s s$^{-1}$. The observed spin period derivative of PSR J0250+5854 indicates a surface magnetic field strength, characteristic age and spin-down luminosity of $2.6 times 10^{13}$G, $13.7$ Myr and $8.2 times 10^{28}$ erg s$^{-1}$ respectively, for a dipolar magnetic field configuration. This also places the pulsar beyond the conventional pulsar death line, where radio emission is expected to cease. The spin period of PSR J0250+5854 is similar to those of the high-energy-emitting magnetars and X-ray dim isolated neutron stars (XDINSs). However, the pulsar was not detected by the Swift/XRT in the energy band of 0.3-10 keV, placing a bolometric luminosity limit of $1.5 times 10^{32}$ erg s$^{-1}$ for an assumed $N_{rm H}=1.35times10^{21}$ cm$^{-2}$ and a temperature of 85 eV (typical of XDINSs). We discuss the implications of the discovery for models of the pulsar death line as well as the prospect of finding more similarly long-period pulsars, including the advantages provided by LOTAAS for this.



rate research

Read More

We report the discovery of PSR~J2251$-$3711, a radio pulsar with a spin period of 12.1 seconds, the second longest currently known. Its timing parameters imply a characteristic age of 15 Myr, a surface magnetic field of $1.3 times 10^{13}$~G and a spin-down luminosity of $2.9 times 10^{29}~mathrm{erg~s}^{-1}$. Its dispersion measure of 12.12(1)~$mathrm{pc}~mathrm{cm}^{-3}$ leads to distance estimates of 0.5 and 1.3 kpc according to the NE2001 and YMW16 Galactic free electron density models, respectively. Some of its single pulses show an uninterrupted 180 degree sweep of the phase-resolved polarization position angle, with an S-shape reminiscent of the rotating vector model prediction. However, the fact that this sweep occurs at different phases from one pulse to another is remarkable and without straightforward explanation. Although PSR~J2251$-$3711 lies in the region of the $P-dot{P}$ parameter space occupied by the X-ray Isolated Neutron Stars (XINS), there is no evidence for an X-ray counterpart in our Swift XRT observation; this places a 99%-confidence upper bound on its unabsorbed bolometric thermal luminosity of $1.1 times 10^{31}~(d / 1~mathrm{kpc})^2~mathrm{erg/s}$ for an assumed temperature of 85 eV, where $d$ is the distance to the pulsar. Further observations are needed to determine whether it is a rotation-powered pulsar with a true age of at least several Myr, or a much younger object such as an XINS or a recently cooled magnetar. Extreme specimens like PSR J2251$-$3711 help bridge populations in the so-called neutron star zoo in an attempt to understand their origins and evolution.
We report the discovery of PSR J0952$-$0607, a 707-Hz binary millisecond pulsar which is now the fastest-spinning neutron star known in the Galactic field (i.e., outside of a globular cluster). PSR J0952$-$0607 was found using LOFAR at a central observing frequency of 135 MHz, well below the 300 MHz to 3 GHz frequencies typically used in pulsar searches. The discovery is part of an ongoing LOFAR survey targeting unassociated Fermi Large Area Telescope $gamma$-ray sources. PSR J0952$-$0607 is in a 6.42-hr orbit around a very low-mass companion ($M_mathrm{c}gtrsim0.02$ M$_odot$) and we identify a strongly variable optical source, modulated at the orbital period of the pulsar, as the binary companion. The light curve of the companion varies by 1.6 mag from $r^prime=22.2$ at maximum to $r^prime>23.8$, indicating that it is irradiated by the pulsar wind. Swift observations place a 3-$sigma$ upper limit on the $0.3-10$ keV X-ray luminosity of $L_X < 1.1 times 10^{31}$ erg s$^{-1}$ (using the 0.97 kpc distance inferred from the dispersion measure). Though no eclipses of the radio pulsar are observed, the properties of the system classify it as a black widow binary. The radio pulsed spectrum of PSR J0952$-$0607, as determined through flux density measurements at 150 and 350 MHz, is extremely steep with $alphasim-3$ (where $S propto u^{alpha}$). We discuss the growing evidence that the fastest-spinning radio pulsars have exceptionally steep radio spectra, as well as the prospects for finding more sources like PSR J0952$-$0607.
We measure the effects of interstellar scattering on average pulse profiles from 13 radio pulsars with simple pulse shapes. We use data from the LOFAR High Band Antennas, at frequencies between 110 and 190~MHz. We apply a forward fitting technique, and simultaneously determine the intrinsic pulse shape, assuming single Gaussian component profiles. We find that the constant $tau$, associated with scattering by a single thin screen, has a power-law dependence on frequency $tau propto u^{-alpha}$, with indices ranging from $alpha = 1.50$ to $4.0$, despite simplest theoretical models predicting $alpha = 4.0$ or $4.4$. Modelling the screen as an isotropic or extremely anisotropic scatterer, we find anisotropic scattering fits lead to larger power-law indices, often in better agreement with theoretically expected values. We compare the scattering models based on the inferred, frequency dependent parameters of the intrinsic pulse, and the resulting correction to the dispersion measure (DM). We highlight the cases in which fits of extreme anisotropic scattering are appealing, while stressing that the data do not strictly favour either model for any of the 13 pulsars. The pulsars show anomalous scattering properties that are consistent with finite scattering screens and/or anisotropy, but these data alone do not provide the means for an unambiguous characterization of the screens. We revisit the empirical $tau$ versus DM relation and consider how our results support a frequency dependence of $alpha$. Very long baseline interferometry, and observations of the scattering and scintillation properties of these sources at higher frequencies, will provide further evidence.
We present results from LOFAR and GMRT observations of the galaxy cluster MACS$,$J0717.5$+$3745. The cluster is undergoing a violent merger involving at least four sub-clusters, and it is known to host a radio halo. LOFAR observations reveal new sources of radio emission in the Intra-Cluster Medium: (i) a radio bridge that connects the cluster to a head-tail radio galaxy located along a filament of galaxies falling into the main cluster, (ii) a 1.9 Mpc radio arc, that is located North West of the main mass component, (iii) radio emission along the X-ray bar, that traces the gas in the X-rays South West of the cluster centre. We use deep GMRT observations at 608 MHz to constrain the spectral indices of these new radio sources, and of the emission that was already studied in the literature at higher frequency. We find that the spectrum of the radio halo and of the relic at LOFAR frequency follows the same power law as observed at higher frequencies. The radio bridge, the radio arc, and the radio bar all have steep spectra, which can be used to constrain the particle acceleration mechanisms. We argue that the radio bridge could be caused by the re-acceleration of electrons by shock waves that are injected along the filament during the cluster mass assembly. Despite the sensitivity reached by our observations, the emission from the radio halo does not trace the emission of the gas revealed by X-ray observations. We argue that this could be due to the difference in the ratio of kinetic over thermal energy of the intra-cluster gas, suggested by X-ray observations.
Remnant radio galaxies represent the final dying phase of radio galaxy evolution, in which the jets are no longer active. Due to their rarity in flux limited samples and the difficulty of identification, this dying phase remains poorly understood and the luminosity evolution largely unconstrained. Here we present the discovery and detailed analysis of a large (700 kpc) remnant radio galaxy with a low surface brightness that has been identified in LOFAR images at 150 MHz. By combining LOFAR data with new follow-up Westerbork observations and archival data at higher frequencies, we investigated the source morphology and spectral properties from 116 to 4850 MHz. By modelling the radio spectrum we probed characteristic timescales of the radio activity. The source has a relatively smooth, diffuse, amorphous appearance together with a very weak central compact core which is associated with the host galaxy located at z=0.051. From our ageing and morphological analysis it is clear that the nuclear engine is currently switched off or, at most, active at a very low power state. The host galaxy is currently interacting with another galaxy located at a projected separation of 15 kpc and a radial velocity offset of 300 km/s. This interaction may have played a role in the triggering and/or shut down of the radio jets. The spectral shape of this remnant radio galaxy differs from the majority of the previously identified remnant sources, which show steep or curved spectra at low to intermediate frequencies. In light of this finding and in preparation for new-generation deep low-frequency surveys, we discuss the selection criteria to be used to select representative samples of these sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا