Do you want to publish a course? Click here

Estimating regression errors without ground truth values

131   0   0.0 ( 0 )
 Added by Emilia Oikarinen
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Regression analysis is a standard supervised machine learning method used to model an outcome variable in terms of a set of predictor variables. In most real-world applications we do not know the true value of the outcome variable being predicted outside the training data, i.e., the ground truth is unknown. It is hence not straightforward to directly observe when the estimate from a model potentially is wrong, due to phenomena such as overfitting and concept drift. In this paper we present an efficient framework for estimating the generalization error of regression functions, applicable to any family of regression functions when the ground truth is unknown. We present a theoretical derivation of the framework and empirically evaluate its strengths and limitations. We find that it performs robustly and is useful for detecting concept drift in datasets in several real-world domains.



rate research

Read More

To perform robot manipulation tasks, a low-dimensional state of the environment typically needs to be estimated. However, designing a state estimator can sometimes be difficult, especially in environments with deformable objects. An alternative is to learn an end-to-end policy that maps directly from high-dimensional sensor inputs to actions. However, if this policy is trained with reinforcement learning, then without a state estimator, it is hard to specify a reward function based on high-dimensional observations. To meet this challenge, we propose a simple indicator reward function for goal-conditioned reinforcement learning: we only give a positive reward when the robots observation exactly matches a target goal observation. We show that by relabeling the original goal with the achieved goal to obtain positive rewards (Andrychowicz et al., 2017), we can learn with the indicator reward function even in continuous state spaces. We propose two methods to further speed up convergence with indicator rewards: reward balancing and reward filtering. We show comparable performance between our method and an oracle which uses the ground-truth state for computing rewards. We show that our method can perform complex tasks in continuous state spaces such as rope manipulation from RGB-D images, without knowledge of the ground-truth state.
Deep neural networks have been very successful in image estimation applications such as compressive-sensing and image restoration, as a means to estimate images from partial, blurry, or otherwise degraded measurements. These networks are trained on a large number of corresponding pairs of measurements and ground-truth images, and thus implicitly learn to exploit domain-specific image statistics. But unlike measurement data, it is often expensive or impractical to collect a large training set of ground-truth images in many application settings. In this paper, we introduce an unsupervised framework for training image estimation networks, from a training set that contains only measurements---with two varied measurements per image---but no ground-truth for the full images desired as output. We demonstrate that our framework can be applied for both regular and blind image estimation tasks, where in the latter case parameters of the measurement model (e.g., the blur kernel) are unknown: during inference, and potentially, also during training. We evaluate our method for training networks for compressive-sensing and blind deconvolution, considering both non-blind and blind training for the latter. Our unsupervised framework yields models that are nearly as accurate as those from fully supervised training, despite not having access to any ground-truth images.
Mixed linear regression (MLR) model is among the most exemplary statistical tools for modeling non-linear distributions using a mixture of linear models. When the additive noise in MLR model is Gaussian, Expectation-Maximization (EM) algorithm is a widely-used algorithm for maximum likelihood estimation of MLR parameters. However, when noise is non-Gaussian, the steps of EM algorithm may not have closed-form update rules, which makes EM algorithm impractical. In this work, we study the maximum likelihood estimation of the parameters of MLR model when the additive noise has non-Gaussian distribution. In particular, we consider the case that noise has Laplacian distribution and we first show that unlike the the Gaussian case, the resulting sub-problems of EM algorithm in this case does not have closed-form update rule, thus preventing us from using EM in this case. To overcome this issue, we propose a new algorithm based on combining the alternating direction method of multipliers (ADMM) with EM algorithm idea. Our numerical experiments show that our method outperforms the EM algorithm in statistical accuracy and computational time in non-Gaussian noise case.
A key limitation of deep convolutional neural networks (DCNN) based image segmentation methods is the lack of generalizability. Manually traced training images are typically required when segmenting organs in a new imaging modality or from distinct disease cohort. The manual efforts can be alleviated if the manually traced images in one imaging modality (e.g., MRI) are able to train a segmentation network for another imaging modality (e.g., CT). In this paper, we propose an end-to-end synthetic segmentation network (SynSeg-Net) to train a segmentation network for a target imaging modality without having manual labels. SynSeg-Net is trained by using (1) unpaired intensity images from source and target modalities, and (2) manual labels only from source modality. SynSeg-Net is enabled by the recent advances of cycle generative adversarial networks (CycleGAN) and DCNN. We evaluate the performance of the SynSeg-Net on two experiments: (1) MRI to CT splenomegaly synthetic segmentation for abdominal images, and (2) CT to MRI total intracranial volume synthetic segmentation (TICV) for brain images. The proposed end-to-end approach achieved superior performance to two stage methods. Moreover, the SynSeg-Net achieved comparable performance to the traditional segmentation network using target modality labels in certain scenarios. The source code of SynSeg-Net is publicly available (https://github.com/MASILab/SynSeg-Net).
Regularization by denoising (RED) is an image reconstruction framework that uses an image denoiser as a prior. Recent work has shown the state-of-the-art performance of RED with learned denoisers corresponding to pre-trained convolutional neural nets (CNNs). In this work, we propose to broaden the current denoiser-centric view of RED by considering priors corresponding to networks trained for more general artifact-removal. The key benefit of the proposed family of algorithms, called regularization by artifact-removal (RARE), is that it can leverage priors learned on datasets containing only undersampled measurements. This makes RARE applicable to problems where it is practically impossible to have fully-sampled groundtruth data for training. We validate RARE on both simulated and experimentally collected data by reconstructing a free-breathing whole-body 3D MRIs into ten respiratory phases from heavily undersampled k-space measurements. Our results corroborate the potential of learning regularizers for iterative inversion directly on undersampled and noisy measurements.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا