Do you want to publish a course? Click here

Properties of the dense core population in Orion B as seen by the Herschel Gould Belt survey

75   0   0.0 ( 0 )
 Added by Vera K\\\"onyves
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed study of the Orion B clouds (d~400 pc), imaged with the PACS/SPIRE cameras at 70-500 $mu$m by the Herschel Gould Belt survey (HGBS). We release new high-res. maps of column density and dust temperature. In the filamentary sub-regions NGC2023/2024, NGC2068/2071, and L1622, 1768 starless dense cores were identified, ~28-45% of which are self-gravitating prestellar cores. A total of 76 protostellar dense cores were also found. The typical lifetime of the prestellar cores was found to be $t_{rm pre}=1.7_{-0.6}^{+0.8}$ Myr. The prestellar core mass function (CMF) peaks at ~0.5 $M_odot$ and is consistent with a power law with log slope -1.27$pm$0.24 at the high-mass end, compared to the Salpeter slope of -1.35. In this region, we confirm the existence of a transition in prestellar core formation efficiency (CFE) around a fiducial value A_V_bg~7 mag in background visual extinction, similar to the trend observed with Herschel in other clouds. This is not a sharp threshold, but a smooth transition between a regime with very low prestellar CFE at A_V_bg<5 and a regime with higher, roughly constant CFE at A_V_bg$gtrsim$10. The total mass in the form of prestellar cores represents only ~20% of the dense molecular cloud gas at A_V_bg$gtrsim$7 mag. About 60-80% of the prestellar cores are closely associated with filaments, and this fraction increases up to >90% when a more complete sample of filamentary structures is considered. Interestingly, the median separation between nearest core neighbors corresponds to the typical inner filament width of ~0.1 pc commonly observed in nearby molecular clouds. Analysis of the CMF observed as a function of background cloud column density shows that the most massive prestellar cores are spatially segregated in the highest column density areas, and suggests that both higher- and lower-mass prestellar cores may form in denser filaments.



rate research

Read More

The JCMT Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of Orion B: LDN 1622, NGC 2023/2024, and NGC 2068/2071, all of which contain clusters of cores. We present an analysis of the clustering properties of these cores, including the two-point correlation function and Cartwrights Q parameter. We identify individual clusters of dense cores across all three regions using a minimal spanning tree technique, and find that in each cluster, the most massive cores tend to be centrally located. We also apply the independent M-Sigma technique and find a strong correlation between core mass and the local surface density of cores. These two lines of evidence jointly suggest that some amount of mass segregation in clusters has happened already at the dense core stage.
We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 micron map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 micron peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found in previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1-2 x 10^23 cm^-2, most of the mass is found within dense cores, while at lower cloud column densities, below 1 x 10^23 cm^-2, this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023 / 2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars.
101 - J. Lane , H. Kirk , D. Johnstone 2016
The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in the 850 {mu}m and 450 {mu}m SCUBA-2 maps from the JCMT Gould Belt Legacy Survey. We identify dense cores in a uniform manner across the Orion A cloud and analyze their clustering properties. Using two independent lines of analysis, we find evidence that clusters of dense cores tend to be mass segregated, suggesting that stellar clusters may have some amount of primordial mass segregation already imprinted in them at an early stage. We also demonstrate that the dense core clusters have a tendency to be elongated, perhaps indicating a formation mechanism linked to the filamentary structure within molecular clouds.
155 - K. Kubiak , J. Alves , H. Bouy 2016
This paper continues our study of the foreground population to the Orion molecular clouds. The goal is to characterize the foreground population north of NGC 1981 and to investigate the star formation history in the large Orion star-forming region. We focus on a region covering about 25 square degrees, centered on the $epsilon$ Orionis supergiant (HD 37128, B0,Ia) and covering the Orion Belt asterism. We used a combination of optical (SDSS) and near-infrared (2MASS) data, informed by X-ray (textit{XMM-Newton}) and mid-infrared (WISE) data, to construct a suite of color-color and color-magnitude diagrams for all available sources. We then applied a new statistical multiband technique to isolate a previously unknown stellar population in this region. We identify a rich and well-defined stellar population in the surveyed region that has about 2,000 objects that are mostly M stars. We infer the age for this new population to be at least 5, Myr and likely $sim10$,Myr and estimate a total of about 2,500 members, assuming a normal IMF. This new population, which we call the Orion Belt population, is essentially extinction-free, disk-free, and its spatial distribution is roughly centered near $epsilon$ Ori, although substructure is clearly present. The Orion Belt population is likely the low-mass counterpart to the Ori OB Ib subgroup. Although our results do not rule out Blaauws sequential star formation scenario for Orion, we argue that the recently proposed blue streams scenario provides a better framework on which one can explain the Orion star formation region as a whole. We speculate that the Orion Belt population could represent the evolved counterpart of an Orion nebula-like cluster.
We present Herschel SPIRE and PACS maps of the Cepheus Flare clouds L1157, L1172, L1228, L1241, and L1251, observed by the Herschel Gould Belt Survey (HGBS) of nearby star-forming molecular clouds. Through modified blackbody fits to the SPIRE and PACS data, we determine typical cloud column densities of 0.5-1.0 $times$ 10$^{21}$ cm$^{-2}$ and typical cloud temperatures of 14-15 K. Using the getsources identification algorithm, we extract 832 dense cores from the SPIRE and PACS data at 160-500 $mu$m. From placement in a mass vs. size diagram, we consider 303 to be candidate prestellar cores, and 178 of these to be robust prestellar cores. From an independent extraction of sources at 70 $mu$m, we consider 25 of the 832 dense cores to be protostellar. The distribution of background column densities coincident with candidate prestellar cores peaks at 2-4 $times$ 10$^{21}$ cm$^{-2}$. About half of the candidate prestellar cores in Cepheus may have formed due to the widespread fragmentation expected to occur within filaments of transcritical line mass. The lognormal robust prestellar core mass function (CMF) drawn from all five Cepheus clouds peaks at 0.56 M$_{odot}$ and has a width of $sim$0.5 dex, similar to that of Aquilas CMF. Indeed, the width of Cepheus aggregate CMF is similar to the stellar system Initial Mass Function (IMF). The similarity of CMF widths in different clouds and the system IMF suggests a common, possibly turbulent origin for seeding the fluctuations that evolve into prestellar cores and stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا